Monthly Archives: May 2018

ONA 10 – Wartości i wektory własne

Dziś poznaliśmy numeryczne rozwiązania problemu znajdowania dominujacych wartości własnych metodą potęgową i wartości własnych bliskich zadanej wartości metodą odwrotną potęgową. Dużo więcej materiału można znaleźć na tej stronie

Jeśli chodzi o funkcje przydatne w pythonie, to przede wszystkim interesują nas funkcje:

scipy.linalg.eig(A)

oraz

scipy.linalg.eigvals(A)

Zadania na dziś:

1. Zaimplementuj metodę potęgową z wykładu i zastosuj ją dla rozważanej na wykładzie macierzy: M=array([[1,2.],[4,3]]). Czy Twoje rozwiązanie różni się od rozwiązania z funkcji eig? Jakie równanie spełniają wektory własne zwrócone przez tę funkcję?

2. Zaimplementuj metodę Rayleigha RQI (z wykładu ). zastosuje ją do znalezienia najmniejszej wartości własnej macierzy M z zad. 1.

3. Rozważ macierz A=array([[-1,2,2],[2,2,-1.],[2,-1,2]]). Spróbuj znaleźć jej wartości własne zaimplementowanymi przez siebie metodami. Skąd biorą się problemy? Czy podobne problemy spotkają nas dla macierzy rand(3,3)?

4. Rozważ macierz M=array([[a,1.],[0,b]]). Gdzie a i b są dodatnimi liczbami całkowitymi. Jak zmienią się wartości własne, gdy zamiast zera wstawimy do M[1,0] wartośći 1/k dla k rosnącego wykładniczo?

ONA 9 – Interpolacja funkcji

Tym razem zajmiemy się Interpolacją funkcji przy pomocy wielomianów i funkcji sklejanych.

Teoria z wykładu jeśli chodzi o wielomiany znajduje się tu a jeśli chodzi o funkcje sklejane tu.

Większość interesujących nas dzisiaj funkcji znajdziemy w module scipy.interpolate, ale najprostsze funkcje polyfit  i poly1d znajdują się w module numpy.  W module interpolate interesują nas funkcje:

Na laboratorium będziemy rozwiązywać następujące problemy:

1. Spróbuj zinterpolować funkcję sinus(x) na przedziale [0,math.pi] korzystając z równoodległych N węzłów (np. wygenerowanych używając np.linspace(0,math.pi,N)). Jak zachowuje się błąd średniokwadratowy tej interpolacji dla punktów np.linspace(0.math.pi,1000), gdy N rośnie?

2. korzystając z przykładu pokazanego na wykładzie, gdzie wartości y_i=[1,1,1,2], czy potrafisz dobrać pozycje x_i=[1,x2,x3,4] tak aby uzyskać dowolnie dużą amplitudę interpolowanego (polyfit(x_i,y_i,s=0) wielomianu na przedziale [1,4]? Czy błąd aproksymacji (polyfit, k=2) wielomianem stopnia 2 jest tak samo duży?

3. Spróbuj interpolować te same dane przy pomocy krzywych sklejanych. Czym różnią się splajny dla różnych k (k=1,2,3)?

4. Wygeneruj zaburzone obserwacje wg funkcji y=log_2(x) + scipy.stats.normal() w wielu (~1000) punktach na przedziale 1..100. Czy lepiej będzie interpolować, czy aproksymować aby znaleźć kształt funkcji?