ONA 10 – Wartości i wektory własne

Dziś poznaliśmy numeryczne rozwiązania problemu znajdowania dominujacych wartości własnych metodą potęgową i wartości własnych bliskich zadanej wartości metodą odwrotną potęgową. Dużo więcej materiału można znaleźć na tej stronie

Jeśli chodzi o funkcje przydatne w pythonie, to przede wszystkim interesują nas funkcje:

scipy.linalg.eig(A)

oraz

scipy.linalg.eigvals(A)

Zadania na dziś:

1. Zaimplementuj metodę potęgową z wykładu i zastosuj ją dla rozważanej na wykładzie macierzy: M=array([[1,2.],[4,3]]). Czy Twoje rozwiązanie różni się od rozwiązania z funkcji eig? Jakie równanie spełniają wektory własne zwrócone przez tę funkcję?

2. Zaimplementuj metodę Rayleigha RQI (z wykładu ). zastosuje ją do znalezienia najmniejszej wartości własnej macierzy M z zad. 1.

3. Rozważ macierz A=array([[-1,2,2],[2,2,-1.],[2,-1,2]]). Spróbuj znaleźć jej wartości własne zaimplementowanymi przez siebie metodami. Skąd biorą się problemy? Czy podobne problemy spotkają nas dla macierzy rand(3,3)?

4. Rozważ macierz M=array([[a,1.],[0,b]]). Gdzie a i b są dodatnimi liczbami całkowitymi. Jak zmienią się wartości własne, gdy zamiast zera wstawimy do M[1,0] wartośći 1/k dla k rosnącego wykładniczo?

Leave a Reply

Your email address will not be published. Required fields are marked *