ONA 8 – Metoda najmniejszych kwadratów

Dzisiaj na wykładzie omówiliśmy zasadniczo tematy zawarte w wykładzie 12. z metod numerycznych. Jeśli ktoś chciałby doczytać to znajdzie materiały tutaj

Zadania na lab:

0. Rozważmy trzy punkty na płaszczyźnie: (0,6), (1,0) i (2,0). Jaka prosta przechodzi najbliżej nich? ułóż układ równań liniowych, który można rozwiązać metodą najmniejszych kwadratów. Wykorzystaj funkcje scipy.linalg.qr aby zobaczyć rozkład QR macierzy A. Użyj funkcji scipy. linalg.lstsq aby znaleźć rozwiązanie. jakie jest znaczenie wartośći zwróconych przez tę funkcje?

1. Rozważmy dane:

x f(x)
0.00 4.00000000000000e+00
1.25 3.28650479686019e+00
2.50 3.08208499862390e+00
3.75 3.02351774585601e+00
5.00 3.00673794699909e+00
6.25 3.00193045413623e+00
7.50 0.00055308437015e+00
8.75 3.00015846132512e+00
10.00 3.00004539992976e+00

Jak będzie wyglądało dopasowanie met. najlepszych kwadratów funkcji f(x)=a+b*exp(-x) do tych danych?

2. Rozważmy dane o obwodzie pnia, trees-stripped ( do wczytywania przyda się funkcja scipy.loadtext). Kolejne kolumny oznaczają tu:

  • obwód pnia
  • wysokość drzewa
  • objętość pozyskanego drewna.

Spróbuj dopasować (metodą najmniejszych kwadratów objętość drzewa jako funkcję:

  • kombinację liniową obwodu pnia i wysokości drzewa
  • iloczynu wysokości przez obwód
  • kombinację liniową powyższych

Gdzie uzyskujemy najmniejszy błąd przybliżenia?

3(*). Przedstaw na wykresie wynik zadania 1 (wykres punktowy obserwacji i dużo gęściej próbkowany wykres liniowy znalezionej funkcji). Jaki jest problem naszego rozwiązania? czy można jakoś pomóc sobie używając ważonego problemu średnich kwadratów? jak to zrobić dla wagi jednej z obserwacji=0? a jak dla wagi 0.1?

 

Leave a Reply

Your email address will not be published. Required fields are marked *