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Topics for the course

Sequences in Biology — what do we study?

Sequence comparison and searching — how to quickly find
relatives in large sequence banks

Tree-of-life and its construction(s)

Short sequence mapping — where did this word come from
DNA sequencing and assembly — puzzles for experts
Sequence segmentation — finding modules by flipping coins

Data storage and compression — from DNA to bits and back
again

Structures in Biology — small and smaller
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How to make It efficient

Diverse audience, | don’t know what you know

Please do interrupt me If you have a question!

| will not go very deeply into biological detalls, so
If you want more, please ask me later for links to
more materials

| will not go deeply into proofs or derivations, so
If you want more, please ask me later for links to
more materials

If you need to ask later: bartek@mimuw.edu.pl
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The DNA Is not the only sequence
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Finding related sequences

* Assume we have a new sequence of a
previously unknown species (a hew virus,

bacteria, etc).

 Can find find its closest relative in the database
of known DNA sequences?

 How quickly can this be done?



The growing problem

* The cost of sequencing is decreasing
exponentially and the throughput is increasing

Baseline information 1

Cost of genome sequencing compared with
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Log scale
100,000

Cost of computing
(Moore’s law) 10,000
1,000 DOE JGI Sequence Output
100
10
$ per million DNA bases
1.0
L] ] L] ] L] ] L] ] L ] L ] U'.l
1999 2002 04 06 OB 10
Source: Broad Institute




Naturally databases grow too...

Growth of GenBank
(1982 - 2008)

100 100

90 - 90
80 - 80
70 - 70
60 - 60
50 - 50

40 - 40

Sequences (millions)

30 A 30

Base Pairs of DNA (billions)

20 - 20

mm Base Pairs
—+—Sequences

10 A 10

0 +
1982 1986 1990 1994 1998 2002 2006

Genbank non-redundant nucleotide count is now > 101! and
Sequence cou nt 2 108 image source NIH NCBI release notes



What do we know from yesterday?

Indeed, we can find similar sequences by comparing them
with local sequence alignment methods

Such algorithms run in O(n - m) time scale

How much would a Smith-Waterman analysis of a single
new sequence (1000bp) against genbank take?

How long for a genome with 10 thousand genes?
How long for the JGI annual throughput?

Can we wait that long?

Can it be done faster?

What assumptions do we need to make?



Reversing the
nearest sequence problem

We are looking only for similar sequences in the database,
so most of our work with S-W algorithm is comparing
sequences which will not show up in the result

Can we tell if a sequence is not-similar more quickly than
S-W?

We need to define a meaningful way of specifying our
definition of not-similar

We need an algorithm that can reject bad alignments
based on a meaningful and computable criteria



Near diagonal in DP matrix?

Good global alignments reside close to the diagonal

400

150

cutdine
200

= hidden

cut-point

e Restricting to search within fixed distance from diagonal
brings our computing time to almost linear

e but not for local alignments

image source: pecan algorithm



FASTA search for short ID matches
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Re-score using PAM matrix
Keep top scoring segments.




-4— Seguence A ——

Improve on this idea...

(c)
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Apply "joining threshaold”
to eliminate segments that

are unlikely to be part of the alignment
that includes highest scoring segment.

-4— Sequence A —

(d)
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Lse dynamic programming

to optimise the alignmert ina
narrow band that encompasses
the top scoring segments.




Hashing words similar to the query

| Query sequence: PQGEFG

Word 1: PQG
Word 2: QGE
Word 3: GEF

Word 4: EFG



Extending words to segments

Querysequence:R P P Q G L F

Database sequence:D P P E G V V

L’Exact match is scanned.

Score:-2 7 7 2 6 1 -1

L’HSP‘

Optimal accumulated score = 7+7+2+6+1 = 23

image source wikipedia



High scoring segment pairs (HSP)
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Complete BLAST algorithm

BLAST Algorithm

(1) For the query find the list of high scoring words of length w.

Basic Local Alignment I

SearCh TOOI Q_—\]_; Masimum of L-we | words ftypically w = 3 for proteins)
Hashing words similar

Foreach waord from the query sequence
to query

Finding pairs of @ ffﬂh:as oty o s
matches to the same = =il
sequence T

Euact matches of words

matri (g.g. PAM 2507, For typical parameters
there are amund 50 words per esidue of the query..

from wonrd list

SearCh I n g fOr (3) qu each word match, extend alignment in both directions to find
M aX| m al Seg m e nt alignments that SGDFEIQFIEE’ter thanl Sll::nre threshold S.
Pairs among HSPs |

Mzciirtal Seqrem Pais (MSP)



Looking for rare findings

Assume that you found an HSP, is it worth keeping it in
the result?

Behave like a collector: it's only worth keeping if it is rare

Formally, we want matches which are ulikely to occur by
random in similar situations (defined by size and
composition of the query and database)

In statistics, we are performing hypothesis testing: under
null hypothesis, there are no matching sequences in the
database

We are interested in the probability of observing a given
score (or higher) under assumption of the null model




BLAST E-values

e We cannot really estimate this probability by Monte-Carlo
(data is too large for large-scale sampling)

e |t is assumed, that it should follow the extreme value
distribution (Gumbel distribution)

Km'n")
A

p(s > x) = 1 — exp(—e ), = 8

=i
=omeT
in nn

P e

parameters K and A can be estimated from data, then the
E-value is computed E = pD, where D is the number of
sequences in the database (similar to Bonferroni correction)



Altschul Karlin 1990

Expected number of ungapped alighments with score S found with
random sequences is:

E=Kmne™M

where K is a constant that depends on S/i,j] and can be computed from the
theory for any scoring function. The parameter A is specified by the
equation

1=5pp,e il

Note that E is proportional to the size of the search space, mn, and decreases
exponentially with the score, S



Target frequencies

Given sequences g and b:

e Alternate hypothesis (Fla): a and b are related at n PAMs divergence.

— Residues iandj are aligned with “target” frequencies, q”,-j-

e Null hypothesis (H,): a and b are unrelated.

— Residues jandjare aligned with background frequencies, piP;

Note that the PAM and BLOSUM matrices were constructed by estimating g;;

from data. However, any scoring matrix (that satisfies the appropriate
assumptions for Karlin Altschul statistics) can be expressed as a log odds matrix of

the form q"ii
S"[i, j1=log, —

PP




The frequencies oy in the above equation are the characteristic target
frequencies of the matrix S[] . In other words, g; is the frequency with which i is
aligned with j in Maximal Segment Pairs (MSPs) obtained with S[]. Recall that an
MSP is “the highest scoring pair of identical length segments chosen from two

sequences. The boundaries of an MSP are chosen to maximize its score, so an MSP

may be of any length.”!
LAltschul et al. J Mol Biol 215: 403-10 (1990

Target frequencies for substitution matrix Sf/can be estimated empirically
as follows:

 Generate “random” sequences from background probabilities
* Find MSPs in pairs of random sequences using S[] to score alignments
 Count target frequencies in those MSPs

Target frequencies can also be estimated theoretically using the equation:

Nne. .
q" ZPJ-P,,,-@_//LS 2, /]



We can choose the best matrix

“Theorem” (Karlin and Altschul, 1990)

The best scoring matrix for distinguishing significant alignments from
chance alignments is the scoring matrix that gives the greatest difference in
scores between related alignments and chance alignments. For sequences
diverged by n PAMs, the best discrimination is obtained by

q'ij
PI-PJ-
the matrix corresponding to the q”fj from related sequences at the

S, j]= log2

evolutionary distance of interest.



“proof” of the “theorem”

Proof by contradiction:
— Suppose

1. S*[]is the matrix that best distinguishes chance alighments from 2STi. 71
* — [,
related alignments at a given evolutionary distance and let 9; = PP € /
2. the frequencies of observing i paired with j in MSPs (locally maximal

ungapped alignments) obtained with S*[ ] are notq’;

— Then there exists some x and y in X that are aligned in MSPs with a frequency
greater than ;.

— We can increase the score of the MSPs by increasing the score for aligning x
with y, indicating that S*[x,y] does not have the best discriminatory power,
leading to a contradiction.



Implications

BLAST will give reasonable accuracy as long as the empirical target
frequencies, g, in the alignments of interest do not deviate too far

from the theoretical target frequencies:

_ _S[i
95 = PiP € ]

Reasonable accuracy can be achieved with two or three matrices.



BLAST summary

Sufficiently fast heuristic approach

Smart approach to the problem allows linear
speedup of the result

Heuristic based on statistical reasoning, but not
using statistical model as in the rigorous
manner

Currently the most popular bioinformatical tool



Next Generation Seguencing
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Single molecule sequencing

| * Single molecule
seguencing is in the
prototype phase — gives
even longer reads (up
to 100kb), but with large
error rate (~10%)

« Small devices for single

used are promised to

. O)_(fprd nanopore cost below 1000%$
MinilON on the ISS

(Aug 2016)




How to map a short sequence
to the genome?

* We frequently sequence DNA originating from a
genome closely related to a known one (e.g.
human patient samples, bacteria, viruses, etc)

* Even though they are closely related, they are
not identical (remember, mutations?)

* Sequence reads are short (30-100), genomes
are long (up to 10°10)

* Obviously we need faster methods than DP



Text searching algorithms

« Exact searching (Knuth-Morris-Pratt, Boyer-
Moore) : not applicable

 Many reads and one genome — we would like to
Index the genome to be able to process the reads
quickly

 We need to take errors and variants into account,
but hopefully not too many of them in a single read

* We should consider text indexes (Suffix trees, suffix
arrays and Burrows-Wheeler transform)



Something about SNPs

 Single nucleotide polymorhism (SNP) a position
In the genome where a natural variation Iin
population occurs

Growth of dbSNP, 2002-2012
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Genotyping vs. Sequencing

Many commercial

services offer genotyping

(usually not sequencing)
for very low prices

Some of this information
might be important if you
are sick

Most of the information
provided by such
companies is pure noise
and correlative data

Data security is a big
ISsue
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Suffix tree

Suffix tree

. . Suffix tree for text ababba
» every edge is labelled with a text

substring

» |abels from consecutive edges on
pathes from root to leafs constitute
suffixes

» each suffix is represented in this
way and corresponding leaf is
labelled with its position in the text

» |abels of sibling edges begin with
different symbols

Index size: > 10| T| bytes
Matching time: O(|P| + |occurences|)



Suffix array

Suffix array contains starting position suffix | SA entry
positions of lexicographically 0 | ababba% | SA[0]=0
ordered suffixes 2 abba} | SA[1]=2
5 a$ | SA[2]=5

1 | babba% | SA[3]=1

4 ba$ | SA[4]=4

Suffix array for text ababba 3 bba} | SA[5]=3

6 $ | SA[6]=6

Index size: 4 - |T| bytes
Matching time: O(|P| - log|T| + |occurences|)

with additional LCP table
Index size: 5 |T| —8-|T| bytes
Matching time: O(|P| + log|T |+ |occurences|)



Burrows-Wheeler transform

Burrows-Wheeler transtorm
contains symbols predecessing

lexicographically ordered suffixes. posmog al:?:l]:c)fli)); 3 gw$ gnir%/
BWTI[i] = T[SA[i] — 1] 2 | abba%ab BWT:l:=b

5 | a%ababb | BWT[2]=b

1 | babba%a | BWT[3]=a

4 | ba%abab | BWT[4]=b

Burrows-Wheeler transform for 3 | bba%aba | BWT[5]=a
text ababba 6 | $ababba | BWTI[6|=a




Last-to-first mapping

Cyclic shifts

of text ab bba$ . _
Last-to-first mapping

LF(i) is the position in column F

6 Zb s ; Sﬁ(\)[f] LF6[’] of the i-th symbol of column L.
1| bba%ab | 2 3 Observation

2 | adab bb | 5 4 SA[i] = SA[LF(i)] + 1

3| b bba%a 1 0

4 | ba%ab b 4 5 Corollary

5 | bba$ab 3 1 SA[i] = SA[LF<(i)] + k

6 | $ab bba 6 2




Computing last-to-first mapping

Cyclic shifts
of word ab bba$

I | F L
0 | ab bba$
1 ba%a
2 | a%ab bb
3 ba%$a
4 | ba%a

5 | bba%a

6 | $ab bba

Observation
Occurences of symbol x in columns F and L
are ordered accordingly.

Proof
The order is determined by suffixes
following occurences of x.

C(x) number of occurences of symbols
lexicographically smaller than x in T

Occ(x, 1) number of occurences of symbol x in

BWTIO : i]

Observation
LF(i) = C(BWTIi]) + Occ(BWT]i], i)



Extracting text
Structure for extracting text
» Burrows-Wheeler transform of T
» array C
» regularly sampled values of arrays Occ(x, )
>

array with regularly sampled values of SA™!

Algorithm

1: function EXTRACT(begin, end)

2 p < cache[[end/ CacheEvery,,, |] > Get the closest cached position after end
3 dist < end — end mod CacheEvery,, .,

4 while dist > 0 do > LF-map to the end position
: p+ LF(p)

6 end while

7 dist < end — begin

8 result = e

9: while dist > 0 do > LF-map and extract next begin — end characters
10: result = BWT[p] + result > Prepend current character to the result
11: p + LF(p)

12: end while

13: return result

14: end function



Backward searching

Structure for backward searching
» Burrows-Wheeler transform of T
» array C

» regularly sampled values of arrays Occ(x, )

Algorithm

1: function FIND(Q1 )
2: sp +— C(Qm)

3: ep—C(Qmn+1)—1

4: fori <~ m—-—1,1do

5: sp=C(Q;) + Oce(Q;,sp—1)+1

6: ep = C(Qi) + Oce(Qi, ep)

7: if ep > sp then

8: break > No matches, jump out
9; end if

10: end for

11: return (sp, ep) > The opaque result is just a range in the BWT array

12: end function



Suffix indexes

Suffix tree suffixes = paths from root to leaves

» index size: > 10 - [genome| bytes
» exact mapping time: O(|read| + |occurences|)

Suffix array lexicographic order on suffixes
» index size: > 4 - |genome| bytes
» exact mapping time:
O(|read| - log |genome| + |occurences|)

FM index self-index based on Burrows-Wheeler transform

» index size: < 1-|genome| bytes (including
sequence!)

» exact mapping time: 2-1000x slower than suffix
arrays



Operations in Ferragina-Manzini index

Find(Q) — R searches for all occurrences of sequence Q and
returns an opaque result R that can be used with
other operations.

FindSuffixes(Q1..m) — Ri..m works just like Find, but returns
results for each suffix of @ so that R; is the result of
searching for Q; m.

FindContinue( Q1. m, Roid, f) — Rnpew Jjust like Find searches for all
occurrences of Q1_m, but takes advantage of an
earlier result R,;y, assumed to be obtained by
searching for Qr .,, and returns a new result Ryew.

Count(R) — k returns the number of occurrences k represented by

R.

Locate(R) — h_x returns locations of occurrences represented by

R.

Extract(b, /) — S retrieves a subsequence of the reference
sequence T: S=T[b..b+1—1].



Bowtie (Langmead et al. '09)

Seed — high-quality part of the read (default: first 28bp)
Policy

Search for read occurences in the genome with

» limited number of errors in the seed (default: first 28bp),

» limited sum of quality values of mismatched positions in the
whole read.

Algorithm

» Genome index is searched with k-neighborhood of the seed of
a read.

» |Located occurences are extended to whole read mappings and
the quality criterion is checked.



» k<3

» Double indexing:
FM-index is build for a
genome sequence
(forward index)
and for a reverse

sequence (mirror index).

Bowtie — avoiding excessive backtracking

lo-half hi-half
lgccg.. | |..agcal
— _
Phase 1 | | e
=20 0-2 0
Mirrorindex
Forward index
Phase 2 [acga..] | ..gccg]
=120
Forwardindex .0 )
Mirror index
|gccg... | .,.agcal
| >0 | From Phase 2
Phase 3 >
lgccg... | [..agcal
I >0 | 1 | ’ |




BWT mapping summary

» Effective tools are used in short read mapping
using BWT and FMI

* Index can be linear in genome size and match
finding with small (<3) number of mismatches is

feasible

* Large number of mismatches works against
these methods



Even faster read mapping?

* Sometimes we can agree to a worse mapping
efficiency (some random reads not mapped) if it
Increases the speed of overall mapping

* This is In particular true in cases where we want
to count reads rather than identify the variants

* One such case Is mMRNA expression profiling,
when we are interested In relative abundances
of fragments of the reference sequence



RNA-seq data preparation

(@) mRNA or total RNA

L y— L f—
= ] =
[ —
C =

[ J [ J

Remove rRNA?
Select mRNA?
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J. A. Martin and Z. Wang Next-generation transcriptome assembly. Nature Reviews 2011.



RNAseq Reads mapped to the genome
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STAR — ultrafast read mapping
(Dobin et al. 2012)

(a) Map Map again
MMP 1 : MMP 2 Table 1. Mapping speed and RAM benchmarks on the experimental
T ~ RNA-seq dataset
' RNA-seq read
]
' Aligner Mapping speed: million Peak physical
read pairs/hour RAM, GB
exons in the genome 6 threads 12 threads 6 threads 12 threads
(b) (c) STAR 309.2 549.9 27.0 28.4
STAR sparse  227.6 423.1 15.6 16.0
Map Map TopHat2 8.0 10.1 41 113
MMP1  Extend MMP 1 Trim RUM 5.1 7.6 269 53.8
> > > > MapSplice 3.0 3.1 33 3.3

mismatches A-tail, or adapter,
or poor quality tail



Alignment free RN

guantitation

 Sallfish method
(Patro et al. 2014)

* \We can simply count
unique k-mers in the
reads and use only
those to quantify
transcripts

e 25X speed
Improvement, withou
much loss In
accuracy

Reference transcripts

a + Read data
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f
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|
|
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Transcript k-mer T
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Kallisto -even faster guatitation

» Kallisto method (Bray
et al. 2015)

bI | : : |

» Introducing a graph of 00{@ Z
overlapping k-mers for e T
;: O=~0~0

c
the different
transcripts as an index q
- Better implementation o9 2
gives another 10x . e

speed improvement




Sequencing by Hybridization

DNA ARRAY C4)
AA AT AG AC TA TT TG TC GA GT &G GCCA CT CG CC

AFFYMETRIX, AFFYMETRIX
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Seqguence reconstruction

» Given the spectrum of observed k-mers, we can
reconstruct the sequence

 Direct approach leads to the Hamiltionian path problem

(NP-Complete)

 Small change in the k-mer representation leads to Eulerian
path finding (Pevzner 2000)

Sequence reconstruction (Hamiltonian path approach)

S={ ATG AGG TGC TCC GTC GGT GCA CAG

I

Vertices: I-tuples from the spectrum S. Edges: overlapping I-tuples.

Path visiting ALL VERTICES corresponds to sequence reconstruction

}

ATGCAGGTCC

S=(ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT}

Vertices correspond to (I-1)-tuples.
Edges correspond to l-tuples from the spectrum

GT CG
AT % g A
G
e T,
GT e GT CG
AT " o - et
G G

ATGGCGTGCA ATGCGTGGCA



A historical digression
on DNA sequence assembly

 Human Genome * Celera genomics
project project
- fStacrIt'ed In 198%9() - Started later in 1996
unding since , -
- ~$3 billion - Aimed to

commercialize

- Results announced in genomic information

2000 by the US
president Clinton and - Results announced

UK prime minister Blair jointly with HGP



HGP announcement

 First draft announced jointly by two competing
consortia

* Brought fame to Craig Venter and Francis Collins, but
prevented genome commercialization
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Classical genome assembly (HGP)

* Oredrly process with restriction mapped
fragments and scaffold assembly

STS

Mapped Genome
Scaffolds:
1 I I | | 1 I | I |
Scaffold:
g A t
Read pair (mates) Gap (mean & std. dev. Known)
Contig: —_————_— Consensus

= = @ ——__ Reads (of several haplotypes)

® SNPs
== BAC Fragments



Shotgun genome seqguencing
(Celera, E. Myers)

2. Shatter
the DNA
into shorter
l pieces
e —
—— e ——
-'I-_____-.-F -#..--—-.\
ﬂ \-.—-_f
1--'-—-‘-.— ,_,.—-l-'_‘--....
l 3. Sequence the pieces
ACCTGTGCTCGATGCTAGCTITG GGATCACTCGACTGCTGATTCGGCTC CACAATGGGTTAACAGATCGTAGC
AATGCGTAGCAGTAAACCGTAGGT GTAGGTACCGAATGCAGGTCACAAT AGGATACAAGATCCTGACCTGAAGT

4. A computer matches up
overlapping parts to get a
contiguous sequence.

AATGCGTAGCAGTAAACCIGTAGGT| CACAATGGGTTAACAGATCGTAGC
GTAGGTIACCGAATGCAGGTICACAAT

!

AATGCGTAGCAGTAAACCGTAGGTACCGAATGCAGGTCACAATGGEGGTTAACAGATCGTAGC




Take-home message from HGP

» Celera started later and could take advantage
of much more computing power, therefore did
not waste so much time on planning different
stages of the process

* |In this case the Moore’s law and smart
computer scientists (E. Myers in particular)
helped in speeding up the process



Seqguence asembly from short reads

(x2)

X2
AATGCCGTACGTAGGGTAATATATGACCA o

@ (Sequencing: Sclexa, lllumina, etc..)

(x2)
(x4)
(x2)
(x2)

Compute kK-mer

TGCCGT TAGGGT ATATAT with k=4 (x2)
AATGCT TACGTA ATGACC |:> (x2)
TTGCCGE CGTAGG TAATAT (x2)
GTACGT GTACTA (x2)

AATGCC GGGTAA TGACCA
GTAGGG TATGAC (x2)
CTATAT (x2)

Crearte Graph for
the set of k-mers

(x2)

(x3)
(x2)

(x3)
(x3)

e e e e B B e R R B I I B 2 O B I O T T T T O s s R A S
oo PrPrEEPPPEP S 000NPP-oN-—"A-—-SaMNnnMNmMm>»>x>
GNP NnMmEPrrrOonNnnkEPIob>o-S0MN--H
A= AN OPO0=-O0=0MNPPP=—"0N=-2>2=MN>»=-O0>»=>2602>

_ - TATG
GTAA TAAT AATA ATAT
TATAM“
TTGC TGCC GCCG CCET CGTA GTAG TAGG AGGG GGGT| 5 GGTA
AATG ATGC
T ch TACT ACTA CTAT
6TAC '
TACG ACGT

ATGA TGAC GACC ACCA

VELVET assembler, Zerbino et al. 2008



Simplification of deBruljn graph

* \WWe can compress paths without forks

TATG
GTAATA ATAT
TATA
T3 &€ TGCCGTA GTAGGGTA
AATG ATGC
TACTAT
TGCT GTAC
TACGT

ATGACCA

VELVET assembler, Zerbino et al. 2008



Tips and bubble removal

GTAATA » ATAT
e 11pS
@ TGCICGTA GTABGGTA
AATG AT :
_ TACTAT
GTAC
T ACGET

ATGACCA

TATG

TATA

GTACTAT
CGTA TATGGCT > CGTAGTATGGCT

GTAGTAT

VELVET assembler, Zerbino et al. 2008



De novo assembly

* De novo assemblers (VELVET, Spades, etc.) are
ressurecting the idea behind Sequencing by
hybridization

* Even though there are limitations to their use
(repetitive regions, k-mer length, memory
constraints) they are very useful in contig
creation from raw reads

* Many heuristic improvements and specialized
tools for specific applications



Metagenomics

Popularized by Craig Venter in Global Ocean
Sampling expedition

Shotgun sequencing of microbes from Sargasso sea

ldentified many novel gene sequences without
attributing them to specific species

Now very frequently done in other environments: soill,
human skin, human intestine

Helpful in finding new important enzymes (from soll
around chemical waste facilities)

|dentifled some microbes that are relevant for human
health



Dr Venter and his projects




How do high-ego personalities
drive research in life sciences?
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