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The Stages of Evolution

We are not the “most” evolved species
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DNA replication enables inheritance
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DNA replication — mechanism

® DNA polymerase is the key

enzyme for DNA replication

® During replication, helper

enzymes carry out
“proof-reading” of the
replicated strand

® error rate (under no stress)

< 1077 nucleotides
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Fundamental problem

® How far in evolution are the sequences that we can
observe in different living species?
® More formally: Can we define a measure of sequence
similarity
d: T xR
approximating the true evolutionary distance?

® Hint: We should count the number of mutations leading to
the observed divergence.
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We can observe only the current situation. What about
ancestral sequences?

GTCTGTAGTA GTCTGTAGGA GTCGGTAGGA
Y, \ y \ Y. \

3 mutations/ \

/ \

\\

/ \ ,/'
2 mutations/’ \ 1 mutation / \
/ \

/ \

/ \ / \ / \
GTCTGTAGCA  GTCTGTAGGA GTCTGTAGCA  GTCTGTAGGA GTCTGTAGCA  GTCTGTAGGA

Solution: Parsimony — In case of lack of evidence for a more
complex situation, take the simplest possible explanation.
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Subproblem 2: Time reversibility

?

/ A
1 mutation/ \
/ AN

GTCTGTAGCA GTCTGTAGGA

Technically, in order to estimate the ancestral sequence, we
need to assume that the process is “time-reversible”, i.e. In the
stable state, the rates of mutating the sequence s; into s, are
the same as s, into s;. This is a reasonable simplification for
“short” evolutionary time-scales.
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® Time-reversible Markov Chain*
® Sequences from XX are states (How many of them?)

® Transition probabilities assume independent base
substitution

® \We need to define a symmetric base substitution matrix

® (*) In fact, we should consider a continuous-time Markov
chain, to avoid problems with exact generation times...
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Trasition and rate matrices

We need to define the transition matrix
paa(t) pac(t) pac(t) par(t)

pea(t) pec(t) pac(t) per(t)
poa(t) poc(t) pcc(t) per(t)
pra(t) PTG( ) prc(t) pro(t)

P(t) =

From the Markov property, we know that
P(t+ 1) = P(t)P(1)

Converting to an additive model, we have
p(t + At) = p(t) + p(t)QAt,

where the rate matrix
—HA HAG HAC HAT
HGA —HG | %ele} HGT
Q p—

B HcAa HceG —HC Her
MHTA  HTG HTC —HT

The dynamics is described by P'(t) =p()Q- and P(t) = exp(tQ),



N equence The simplest model JC69 (Jukes-Cantor, 1969)
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4 4 4 Solution for continuous time t:
L 3—tp L _l.—tp 1 __1.—tp 1 __1.—tp
1t i€ 1 a¢ r— 1 1€
1 _1.—tp 1 4 3—tp 1 __1.—tp 1 __1.—ip
1 1° 1 tie 1 1° 1 1°¢
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1 € 1 1° 1 1€ 1 tie



N equence Kimura 1980 (K80) model
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N equence Felsenstein model F81 (Felsenstein, 1981)
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distribution, with

TAFTCFTGF#TT
Then the mutation rate matrix may look like the following
* g To T
Q o TA * T T
B T4 TG * T

Mqg Tag T *
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Problems with DNA evolution models

® Mutations occur on DNA level, but selection acts much
higher: on the phenotype level.

® This makes the assumption of base independence invalid
® | ong evolutionary times violate time-reversibility
® Multiplicative measure not too convenient in practice
® We can only account for substitutions, not for insertions or
deletions
Suggested solutions:
® Use protein sequences for comparisons

e Define additive substitution matrices
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o Protein codon table
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uuc [~ -euene L juce UAG  Stop codon | UGG , Tryptophan [E
W
cuu CCuT CAU} o CGU V]
Histidine -
Cc cuc Leucine 1. cce — Proline cac pd Arginine c
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2 ’ . 8
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o Protein substitution matrices
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® We are still assuming time-reversible Markov chain, but
now in space of protein sequences.

Protein world

® Matrix entries contain log-probabilities, leading to additive
measures of similarity

® PAM (Point accepted mutations) matrices (Dayhoff,
1978) describe observed probabilities of occurence of point

mutations for a given average divergence (PAM1 = one
mutation/100 bases, mostly used PAM250)

e BLOSUM (BLOcks Substitution Matrix) (Henikoff,
Henikoff 1992) were constructed using short protein
alignments (Blocks) of given sequence identity.
e.g.BLOSUMB80 was derived from sequences of > 80%
identity
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