> Bartek Wilczyński

Organizationa matters

Biological sequences

Microarrays

SBH

Microarray probe design

On DNA Sequences and graphs

Bartek Wilczyński

February 25th, 2020

Contact info:

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Bartek Wilczyński

On DNA

Sequences and graphs

Organizational matters

- Biological sequences
- Microarrays
- SBH
- Microarray probe design

- Course website regulomics.mimuw.edu.pl/wp/categories/wbo
- e-mail bartek@mimuw.edu.pl
- meeting: Wed 8:30–10:00, room 5770, or by e-mail appointment

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

On DNA Sequences and graphs

Bartek Wilczyński

Organizational matters

Biological sequences

Microarrays

SBH

Microarray probe design

- Homework optional max 10 points total
- Project assignments: 1 small project (10pts) 1 large project (20 pts) (50 percent penalty if late)
- Writen test (open questions) 30 pts
- Passing grade: > 35 pts
- Oral exam only for students with a passing grade
- if you have enough points, you don't have to take the oral exam

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

On DNA Sequences and graphs

Bartek Wilczyński

Organizational matters

- Biological sequences
- Microarrays
- SBH
- Microarray probe design

- Biological sequences (DNA, RNA and amino-acid chains)
- Sequence similarity and evolution
- Comparing biological sequences
- Phylogenetic trees construction and applications
- Hidden Markov Models for biological sequences
- Non-coding sequences
- Next-generation sequencing and sequence assembly

On DNA Sequences and graphs Bartek

Wilczyński

Organizational matters

- Biological sequences
- Microarrays
- SBH
- Microarray probe design

- Computational Molecular Biology (P. Pevzner)
- Biological Sequence Analysis (R. Durbin i in.)
- Sequence Evolution Function (Koonin i Galperin)

> Bartek Wilczyński

Organizational matters

Biological sequences

Microarrays

SBH

Microarray probe design

image (c) T. Maxwell

DNA and its role

・ロト 《理 》 《 思 》 《 思 》 《 国 》

・ コ ト ・ 戸 ト ・ ヨ ト ・

590

image (c) wikimedia

> Bartek Wilczyński

Organizationa matters

Biological sequences

Microarrays

SBH

Microarray probe design

image (c) SCF IIT Delhi

Central dogma of molecular biology

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

Э

Bartek Wilczyński

Organizationa matters

Biological sequences

Microarrays

SBH

Microarray probe design

image (c) Steven M. Carr

Microarray concept

ヘロト 人間 ト 人造 ト 人造 ト

Э

590

affymetrix chip

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sac

Bartek Wilczyński

Organizationa matters

Biological sequences

Microarrays

SBH

Microarray probe design

image (c) Molecularstation.com

Bartek Wilczyński

Organizationa matters

Biological sequences

Microarrays

SBH

Microarray probe design

image (c) P. Pevzner

Sequencing by hybridization

SBH - natural approach

イロト 不得 トイヨト イヨト ニヨー

Sac

Bartek Wilczyński

On DNA

Sequences and graphs

Organizationa matters

Biological sequences

Microarrays

SBH

Microarray probe design

Path visiting ALL VERTICES corresponds to sequence reconstruction ATGCAGGTCC

image (c) P.Pevzner

Bartek Wilczyński

Organizationa matters

Biological sequences

Microarrays

SBH

Microarray probe design

image (c) P.Pevzner

SBH - multiple solutions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

> Bartek Wilczyński

Organizational matters

Biological sequences

Microarrays

SBH

Microarray probe design Hamiltonian and Eulerian graphs

・ロット (雪) (キョット (日)) ヨー

Sac

Finding Hamiltonian paths is NP-complete, while finding Eulerian paths is easy.

image (c) P.Pevzner

Bartek Wilczyński

Organizationa matters

Biological sequences

Microarrays

SBH

Microarray probe design

image (c) P.Pevzner

SBH - Eulerian formulation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Other uses of microarrays

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

On DNA Sequences and graphs

Bartek Wilczyński

Organizational matters

Biological sequences

Microarrays

SBH

Microarray probe design

- SBH not practical due to hybridization errors, superseded by Next generation sequencing
- Gene arrays for RNA abundance quantification
- Snip arrays for detecting mutations (disease screening, paternity tests)
- aCGH arrays for detecting copy number variation
- biochips for quick pathogen detection

Designing unique probes

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

On DNA Sequences and graphs Bartek

Bartek Wilczyński

Organizationa matters

Biological sequences

Microarrays

SBH

Microarray probe design We are given a set of *n* different DNA sequences (targets)
S = {s₁...s_n}

- We need to design a set P = {p₁...p_n} of n sequences (probes) of length k, such that for each i ∈ {1...n}, probe p_i hybridizes with sequence s_i and does not hybridize with any other sequence s_{i,i≠i}.
- Depending on the amount of sequence identity and parameter k, there might be no valid solutions or exponentially many solutions
- Instead of searching for probes of the same length, one might search for probes of the same *melting temperature*

$$t_m = 4 \cdot \# GC + 2 \cdot \# AT$$