Hidden Markov Models

Bartek Wilczyński

April 2nd, 2019

Hidden
Markov Models

Bartek Wilczyński

Materiały do dzisiejszego wykładu

- Do dzisiejszego wykładu: http://www.mimuw.edu.pl/~dojer/wobm/hmm.pdf

Markov Models

- The model consists of a state space $Q \neq \emptyset$ (for our purposes Q is finite)
- and a transition probability matrix $p_{i j}$ where $i, j \in Q$
- The model has no memory, the probability of moving from state i to j depends only on the state i.
- multiplying the matrix P, we can compute the change of the probability distribution as the model "steps" forward
- We are usually interested in stationary distributions π, such that $\pi \cdot P=P$

Bartek
Wilczyński

Hidden Markov Model

image (c) wikipedia

Hidden
Markov Models

Wilczyński

Hidden Markov Model - trajectory

image (c) wikipedia

Hidden Markov Models

Bartek
Wilczyński

Organizacyjne

Hidden Markov Model - example

image (c) wikipedia

Reconstructing HMM trajectories

For any trajectory π, we can calculate the probability of emiting S

$$
P(S, \pi)=\prod_{t=0}^{n-1} e_{\pi(t+1)}(S(t+1)) \cdot p_{\pi(t), \pi(t+1)}
$$

Can we find the optimal trajectory π, given S ?

$$
P\left(S, \pi_{*}\right)=\max \left\{P(S, \pi)\left|\pi \in Q^{*},|\pi|=|S|\right\} .\right.
$$

Viterbi algorithm

We can use dynamic programming, filling in the $v(i, k)$ matrix

$$
v(i, k)=\max \left\{P(S[1 . i], \pi) \mid \pi \in Q^{i}, \quad \pi(i)=k\right\} .
$$

with the initial condition:

$$
v(0, k)= \begin{cases}1 & \text { gdy } k=k_{0} \\ 0 & \text { gdy } k \neq k_{0}\end{cases}
$$

and step function:

$$
v(i, k)=e_{k}(S(i)) \cdot \max _{l \in Q}\left[v(i-1, l) \cdot p_{l, k}\right] .
$$

To finally read out the seeked probability:

$$
P\left(S, \pi_{*}\right)=\max _{k \in Q}[v(|S|, k)]
$$

Estimating emission probabilities

Now, we can calculate the probability of emitting S, over all possible trajectories, with the Forward-method. The initial step is as follows:

$$
f(0, k)= \begin{cases}1 & \text { gdy } k=k_{0} \\ 0 & \text { gdy } k \neq k_{0}\end{cases}
$$

Then, we make similar steps:

$$
f(i, k)=e_{k}(S(i)) \cdot \sum_{l \in Q} f(i-1, l) \cdot p_{l, k}
$$

and finally we can calculate the total probability at the end:

$$
P(S)=\sum_{k \in Q} f(|S|, k)
$$

The same works backwards:

$$
b(i, k)=\sum_{l \in Q} p_{k, l} \cdot e_{l}(S(i+1)) \cdot b(i+1, l)
$$

Estimating emission probabilities

Putting it together, probability of being in state k at step i, given S :

$$
P(\pi(i)=k \mid S)=\frac{P(\pi(i)=k \& S)}{P(S)}=\frac{f(i, k) \cdot b(i, k)}{P(S)} .
$$

emission probabilities

Estimate of the Emission matrix:

$$
e_{k}(x)=\frac{E_{k}(x)}{\sum_{y \in \Sigma} E_{k}(y)}
$$

Can be calculated using f and b

$$
E_{k}(x)=\sum_{j=1}^{n} \sum_{i \in I_{j}(x)} \frac{f_{\mathcal{M}}^{(j)}(i, k) \cdot b_{\mathcal{M}}^{(j)}(i, k)}{P_{\mathcal{M}}\left(S_{j}\right)}
$$

Calculating probabilities

Similarly the transition matrix:

$$
p_{k, l}=\frac{P_{k, l}}{\sum_{q \in Q} P_{k, q}}
$$

depends on f and b

$$
P_{k, l}=\sum_{j=1}^{n} \sum_{i=1}^{\left|S_{j}\right|} \frac{f_{\mathcal{M}}^{(j)}(i, k) \cdot p_{k, l}^{\mathcal{M}} \cdot e_{l}^{\mathcal{M}}\left(S_{j}(i+1)\right) \cdot b_{\mathcal{M}}^{(j)}(i+1, l)}{P_{\mathcal{M}}\left(S_{j}\right)} .
$$

Baum-Welch algorithm

- Suppose, we only know the word S and the sets Q and Σ. Can we estimate both $p_{i j}$ and $e_{i j}$?
- We can start with random $p_{i j}, e_{i j}$ and iteratively proceed as follows:
- Calculate the estimates of being in each of states at each step using f, b and current estimates of e, p.
- Find the optimal e, p, given current e, p, f, b
- This is an example of a known procedure called Expectation-Maximization
- It converges to a local optimum of the likelihood, because at every iteration, the likelihood cannot be decreased.

Extensions and applications

- We will discuss it in more depth next week, but the HMM model is very useful in describing sequence alignments and so-called sequence profiles
- It is relatively easy to extend this model for arbitrary emissions (e.g. Gaussian or multinomial), not necessarily from a discrete space of symbols. This is frequently used for modelling functional genomics data
- It is also quite a good model for segmentation of chromosomes based on different measurements along the genome

