Bartek Wilczyński

Reminder or alignments

Multiple alignments

Multiple Sequence Alignment

Bartek Wilczyński

March 24th, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

How sequences evolve?

GTCTGTAGTA

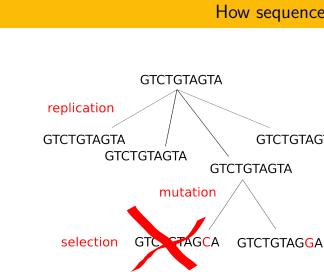


image (c)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 二 臣 … のへで

BW

Multiple

Sequence Alignment Bartek Wilczyński Reminder on

alignments

Reconstructing alignments

◆ロト ◆部ト ◆注ト ◆注ト

E

Alignment Bartek Wilczyński

Multiple

Sequence

Reminder on alignments

Multiple alignments

Η Ε Α G А W G Η Ε Ε -8 -16 --24 --32 ← -40 ← -48 ← -56 ← -64 ← -72 ← -80 0 • ĸ Ρ -8-2-9 -17 🗲 -25 -33 -10 --57 -65-73 ٠ • κ. ٠ K Α -16-10-20 ← -28 ← -52 -60 -3 -4 4 -12-36 --44 -٠ ۰ ĸ W -24-18-7 -15-5 -21 -29 -37 -6 -13 < ۰ . Η -14-18-13-8-9 -13-3-11 -19 -7 ŧ ÷ R ۰ Ε -40-8-16-16_9 -12-15-5 + 3 ŧ ŧ Α -48 -30-11-12-16-3 🔶 -12-152 ŧ ÷ ŧ Ε -56 -38 -24-12-14-15 -12-11-6 _9 1

HEAGAWGHE-E --P-AW-HEAE

Bartek Wilczyński

Reminder on alignments

Multiple alignments

	A	в	С	D
A	0	17	21	27
в		0	12	18
С			0	14
D				0

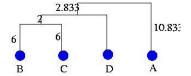


image (c) P. Winter

Greedy tree inference – example

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Bartek Wilczyński

Reminder on alignments

Multiple alignments

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Pairwise alignments used to calculate distances (and reconstruct a tree) may lead to inconsistent picture. For example consider alignment of all pairs of 3 sequences: CAAC, AACA, ACAA

- CAAC- AACA- ACAA-
- -AACA -ACAA -CAAC

Which C in CAAC was in the ancestral sequence?

Bartek Wilczyński

Reminder on alignments

Multiple alignments

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Can we make a generalization of the pairwise alignment idea?

	· · · · · · · · · · · · · · · · · · ·	
Q5E940 BOVIN		76
RLAO HUMAN	MPREDRATWKSNYFLKIIOLLDDYPKCFIYGADNYGSKOMOQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLAO MOUSE	MPREDRATWKSNYFLKIIOLLDDYPKCFIYGADNYGSKOMOQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLA0 RAT	MPREDRATWKSNYFLKIIOLLDDYPKCFIVGADNYGSKOMOQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLA0 CHICK	MPREDRATWKSNYFMKIIOLLDDYPKCFYVGADNYGSKOMOQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLAO RANSY	MPREDRATWKSNYFLKIIOLLDDYPKCFIYGADNYGSKOMOQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNSALE	76
Q7ZUG3 BRARE	MPREDRATWKSNYFLKIIOLLDDYPKCFIVGADNYGSKOMOTIRLSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLAO ICTPU	MPREDRATWKSNYFLKIIOLLNDYPKCFIVGADNYGSKOMOTIRLSLRGK-AIVLMGKNTMMRKAIRGHLENNPALE	76
RLAO DROME	MVRENKAAWKAQYFIKVVELFDEFPKCFIVGADNVGSKQMQNIRTSLRGL-AVVLMGKNTMMRKAIRGHLENNPQLE	76
RLA0 DICDI	MSGAG-SKRKKLFIEKATKLFTTYDKMIYAEADFYGSSOLOKIRKSIRGI-GAYLMGKKTMIRKYIRDLADSKPELD	75
Q54LP0 DICDI	MSGAG-SKRKNYFIEKATKLFTTYDKMIYAEADFYGSSOLOKIRKSIRGI-GAYLMGKKTMIRKYIRDLADSKPELD	75
RLAO PLAFS	MAKLSKOOKKOMYIEKLSSLIQOYSKILIYHYDNYGSNOMASYRKSLRGK-ATILMGKNTRIRTALKKNLOAV-POIE	76
RLA0 SULAC		79
RLAO SULTO	MRIMAVITQERKIAKWKIEEVKELEOKLREYHTIIIANIEGFPADKLHDIRKKMRGM-AEIKYTKNTLFGIAAKNAGLDVS	80
RLA0_SULSO	MKRLALALKQRKVASWKLEEVKELTELIKNSNTILIGNLEGFPADKLHEIRKKLRGK-ATIKYTKNTLFKIAAKNAGIDIE	80
RLAO AERPE		86
RLAO PYRAE	-MMLAIGKRRYVRTROVPARKYKIVSEATELLOKYPYVFLFDLHGLSSRILHEYRYRLRRY-GVIKIIKPILFKIAFTKVYGGIPAE	85
RLAO METAC	MAEERHHTEHIPOWKKDEIENIKELIOSHKVFGMVGIEGILATKMOKIRRDLKDV-AVLKVSRNTLTERALNOLGETIP	78
RLAO METMA	MAEERHHTEHIPOWKKDEIENIKELIOSHKVFGMVRIEGILATKIOKIRDLKDV-AVLKVSRNTLERALNOLGESIP	78
RLA0 ARCFU	MAAVRGSPPEYKVRAVEEIKRMISSKPVVAIVSFRNVPAGOMOKIRREFRGX-AEIKVVKNTLLERALDALGGDYL	75
RLAO METKA	MAVKAKGQPPSGYEPKVAEWKRREVKELKELMDEYENVGLVDLEGIPAPQLQEIRAKLRERDEIIRMSRNTLMRIALEEKLDER-PELE	88
RLAO METTH	MAHVAEWKKKEVQELHDLIKGYEVVGIANLADIPAROLOKMRQTLRDS-ALIRMSKKTLISLALEKAGRELENVD	74
RLAO METTL	MITAESEHKIAPWKIEEVNKLKELLKNGQIVALVDMMEVPAROLOEIRDKIR-GTMELKMSRNTLIERAIKEVAEETGNPEFA	82
RLAO METVA	MIDAKSEHKIAPWKIEEVNALKELLKSANVIALIDMMEVPAVQLQEIRDKIR-DOMTLKMSRNTLIKRAVEEVAEETGNPEFA	82
RLAO METJA		81
RLA0 PYRAB	MAHVAEWKKKEVEELANLIKSYPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRMTLIELAIKKAAQELGKPELE	77
RLA0 PYRHO		77
RLA0 PYRFU		77
	MAHVAEWKKKEVEELAN I IKSYPV IALVDVAGVPA YPLSKMRDKLR-GKALLRVSRNTLIE LAIKRAAQE LGOPELE	76
RLA0 HALMA	MSAESERKTETIPEWKQEEVDAIVEMIESYESYGYVNIACIPERQLQDMRRDLHCT-AELRYERNTLLERALDDYDDCLE	79
RLA0 HALVO		79
RLA0 HALSA		79
	MKEVSQO <mark>K</mark> KELVNEIT <mark>O</mark> RIKASRSVAIVDIAGIRIROVIODIRGKNRGK-INLKVIKKTLLFKALENLGDEKLS	72
RLA0 THE VO	MRKINPKKEIVSELAQDITKSKAVAIVDIKGVRIROMODIRAKNROK-VKIKVVKKILLFKALDSINDEKLT	72
	MTEPAQWKIDFVKNLENE INSRKVAAIVSIKCLRNNEFOKIRNSIRDK-ARIKVBRARLRLAIENFOKNNIV	72
ruler	110	

Note: the correspondence with edit distance is lost

image (c) P. Winter

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Alignment Bartek Wilczyński

Multiple

Sequence

Reminder on alignments

Multiple alignments What is the natural way to score multiple alignment "quality"?

- Assume column independence (as usual)
- Sum of pairs (SP) score

$$S(m_i) = \sum_{k < l} s(m_i^k, m_i^l)$$

- Does it work well (for counting parsimonous mutations)? *hint: Consider a column with all characters different.*
- How much does it overestimate the number of necessary mutations?

Can we use dynamic programming?

A B > A B > A B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B >
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Sac

Э

$$\begin{cases} \alpha_{i_1-1,i_2-1,\dots,i_N-1} + S(x_{i_1}^1,x_{i_2}^2,\dots,x_{i_N}^N), \\ \alpha_{i_1,i_2-1,\dots,i_N-1} + S(-,x_{i_2}^2,\dots,x_{i_N}^N), \\ \alpha_{i_1-1,i_2,i_3-1,\dots,i_N-1} + S(x_{i_1}^1,-,\dots,x_{i_N}^N), \\ \vdots \\ \alpha_{i_1-1,i_2-1,\dots,i_N} + S(x_{i_1}^1,x_{i_2}^2,\dots,-), \\ \alpha_{i_1,i_2,i_3-1,\dots,i_N-1} + S(-,-,\dots,x_{i_N}^N), \\ \vdots \\ \alpha_{i_1,i_2-1,\dots,i_N-1-1,i_N} + S(-,x_{i_2}^2,\dots,-), \\ \vdots \end{cases}$$

image (c) Durbin et al

α

Multiple Sequence Alignment

Bartek Wilczyński

Reminder or alignments

Multiple alignments

Bartek Wilczyński

Reminder on alignments

Multiple alignments

Sum of Pairs is NP-complete...

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Dynamic algorithm has the cost of $\mathcal{O}(n^k)$
- In general, the problem is NP-Complete
- We can still try to slightly improve its performance by looking at the lower bound of alignment score (Carillo-lipman)

$$\sigma(a) \leq S(a^{kl}) - S(\hat{a}^{kl}) + \sum_{k' < l'} S(\hat{a}^{k'l'})$$

$$S(a^{kl}) \geq \beta^{kl}$$

where $\beta^{kl} = \sigma(a) + S(\hat{a}^{kl}) - \sum_{k' < l'} S(\hat{a}^{k'l'})$

Bartek Wilczyński

Reminder or alignments

Multiple alignments

Carillo-Lippman lower bound method

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

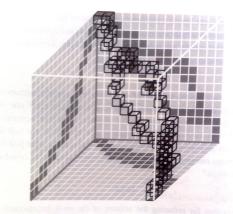


Figure 6.3 Carrillo & Lipman's algorithm allows the search for optimal alignments to be restricted to a subset of the multidimensional programming matrix, shown here as three-dimensional. The sets B^{kl} are shown in dark grey, and the cells in the matrix to which the search can be confined are outlined in black.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Multiple Sequence Alignment

Bartek Wilczyński

Reminder on alignments

Multiple alignments

- $\bullet\,$ We can use the greedy approach similar to UPGMA
- In each step we choose the nearest pair (using pairwise sequence distances)
- And we can merge alignments based on the pairwise alignment between the sequences
- Uses the principle of "once a gap, always a gap".
- We need to "elegantly" align alignments of more than one sequence

*ロ * * @ * * ミ * ミ * ・ ミ * の < @

Multiple Sequence Alignment

Bartek Wilczyński

Reminder on alignments

Multiple alignments

In the process of incremental alignment we need to align profiles (alignments)

$$\sum_{i} S(m_{i}) = \sum_{i} \sum_{k < l \le N} s(m_{i}^{k}, m_{i}^{l})$$

=
$$\sum_{i} \sum_{k < l \le n} s(m_{i}^{k}, m_{i}^{l}) + \sum_{i} \sum_{n < k < l \le N} s(m_{i}^{k}, m_{i}^{l}) + \sum_{i} \sum_{k \le n, n < l < N} s(m_{i}^{k}, m_{i}^{l}).$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Multiple Sequence Alignment

Bartek Wilczyński

Reminder on alignments

Multiple alignments

Algorithm: CLUSTALW progressive alignment

- (i) Construct a distance matrix of all N(N − 1)/2 pairs by pairwise dynamic programming alignment followed by approximate conversion of similarity scores to evolutionary distances using the model of Kimura [1983].
- (ii) Construct a guide tree by a neighbour-joining clustering algorithm by Saitou & Nei [1987].
- (iii) Progressively align at nodes in order of decreasing similarity, using sequence-sequence, sequence-profile, and profile-profile alignment.

Bartek Wilczyński

Reminder on alignments

Multiple alignments

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Sequences might be weighted in the profile alignments
- Different substitution matrices might be used at different levels of merging
- Gap scores are now dependent on the AA removed i.e. $s(-,x) \neq s(-,y)$

Bartek Wilczyński

Reminder on alignments

Multiple alignments

Incremental alignment problems

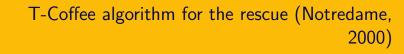
a)Regular Progressive Alignment Strategy

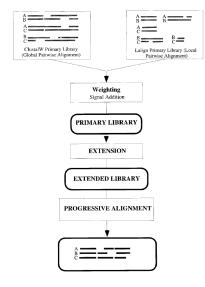
▲SeqA GARFIELD THE LAST FAT CAT

SeqB GARFIELD THE FAST CAT

SeqA GARFIELD THE LAST FA-T CAT SeqB GARFIELD THE FAST CA-T ----SeqC GARFIELD THE VERY FAST CAT SeqD ------ THE ---- FA-T CAT

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()


SeqC GARFIELD THE VERY FAST CAT


SeqD THE FAT CAT

Bartek Wilczyński

Reminder on alignments

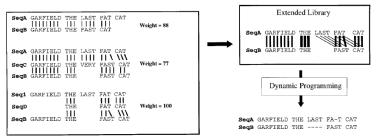
Multiple alignments

Bartek Wilczyński

Reminder on alignments

Multiple alignments

T-Coffee in more detail


イロト 不得 トイヨト イヨト ニヨー

Sac

b)Primary Library

SeqA SeqB	GARFIELD GARFIELD	THE THE	LAST FAST	F AT CAT	CAT	Prim. Weight = 88	SeqB SeqC	GARFIELD GARFIELD	THE THE	VERY	FAST FAST	CAT CAT	Prim Weight = 100
SeqA SeqC	GARFIELD GARFIELD	THE THE	LAST VERY	FA-7 FAS7	CAT CAT	Prim. Weight = 77		GARFIELD					Prim. Weight = 100
SeqA SeqD	GARFIELD	THE THE	LAST	FAT FAT	CAT CAT	Prim. Weight =100	SeqC SeqD	GARFIELD	THE THE	VERY	FAST FA-T	CAT CAT	Prim. Weight = 100

c)Extended Library for seq1 and seq2

Muscle algorithm (Edgar 2004)

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Sac

Alignment Bartek Wilczyński

Multiple

Sequence

Reminder or alignments

Multiple alignments

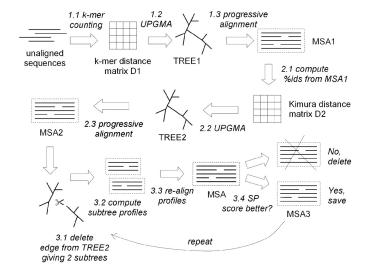


image (c) RC. Edgar, NAR 2004