Drzewa filogenetyczne

Bartek Wilczyński

19. marca 2019

How sequences evolve?

Reminding sequence evolution

GTCTGTAGTA
mutation
selection GTC FAGCA GTCTGTAGGA
image (c) BW

Bartek
Wilczyński

Reminding sequence evolution

Counting trees finding trees

image (c) Wikimedia

Molecular tree of life

Bartek

 WilczyńskiReminding sequence evolution

image (c) I. Letunic - itol.org

evolutionary distance vs. similarity

- We are interested in measuring evolutionary distances by looking at molecular sequences
- We expect distances to grow with decreasing similarity
- The sequence alignment problem allows us to find the optimal alignment, however the score of the alignment is a measure of similarity, rather than distance
- problem of maximizing similarity is similar to minimizing distance
- However:
- We expect $d(x, x)=0$ while for most a, b, $\operatorname{sim}(a, a) \neq \operatorname{sim}(b, b)$
- Distances have triangle inequality, and similarities not

Bifurcating vs. multifurcating trees

Bartek Wilczyński

Reminding

sequence evolution

Counting trees finding trees

Topology C

Topology B

Star topology

image (c) Jorgensen et al. 2005

How many binary trees are there

Bartek
Wilczyński

Reminding
sequence
evolution
Counting trees finding trees

Drzewa
filogenetyczne

Rooted vs. unrooted trees

Bartek

Wilczyński

Reminding

sequence

evolution

Counting trees finding trees

image (c) embl.org

Drzewa
filogenetyczne

Rooting an unrooted tree

Drzewa filogenetyczne

Trees vs. distance matrices

Bartek Wilczyński

Reminding
sequence evolution

Counting trees

Linkage tree for 9 population clusters showing genetic distances (F_{st})
(Cavalli-Sforza et af., 1994:80)

image (c) Cavalli-Sforza 1994

Finding an optimal tree

- Given a tree with branch lengths T, we can easily generate distance matrix $d_{i j}$
- Can we solve the reverse problem, and how does it relate to the original problem?
- Formally, for a given distance matrix D, we want to find a labelled tree T, optimizing the least squares criterion:

$$
Q=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(D_{i j}-d_{i j}\right)^{2}
$$

- In general, it is equivalent to solving the Steiner tree problem - one of the the original NP-complete problems
- Can we find any approximate or specialized solutions?

ultrametric trees: "Evolutionary clock"

Bartek

Wilczyński

Reminding

 sequence evolution
image (c) J. Felsenstein

ultrametric trees: properties

metric requirements

$$
\begin{aligned}
& d(x, y)>0 \quad \text { for } x \neq y \\
& d(x, y)=0 \quad \text { for } x=y \\
& d(x, y)=d(y, x) \quad \forall x, y \\
& d(x, y) \leq d(x, z)+d(y, z) \quad \forall x, y, z \quad \text { (triangle inequality) }
\end{aligned}
$$

ultrametric - any three nodes can be relabelled so, that

$$
d(x, y) \leq d(x, z)=d(y, z)
$$

If you have a distance matrix induced from a tree, is it ultrametric?

Greedy approach 1 - hierarchical clustering

1. Find the i and j that have the smallest distance, $D_{i j}$.
2. Create a new group, $(i j)$, which has $n_{(i j)}=n_{i}+n_{j}$ members.
3. Connect i and j on the tree to a new node [which corresponds to the new group (ij)]. Give the two branches connecting i to $(i j)$ and j to (ij) each length $D_{i j} / 2$.
4. Compute the distance between the new group and all the other groups (except for i and j) by using:

$$
D_{(i j), k}=\left(\frac{n_{i}}{n_{i}+n_{j}}\right) D_{i k}+\left(\frac{n_{j}}{n_{i}+n_{j}}\right) D_{j k}
$$

5. Delete the columns and rows of the data matrix that correspond to groups i and j, and add a column and row for group $(i j)$.
6. If there is only one item in the data matrix, stop. Otherwise, return to step 1.
image (c) J. Felsenstein

Greedy approach 1 - example

Bartek

Wilczyński

Reminding

sequence evolution

Counting trees

	A	B	C	D
A	0	17	21	27
B		0	12	18
C			0	14
D				0

image (c) P. Winter

Greedy approach 2 - Neighbor-joining

Bartek

 Wilczyński. For each tip, compute $u_{i}=\sum_{j: j \neq i}^{n} D_{i j} /(n-2)$. Note that the denominator is (deliberately) not the number of items summed.
2. Choose the i and j for which $D_{i j}-u_{i}-u_{j}$ is smallest.
3. Join items i and j. Compute the branch length from i to the new node $\left(v_{i}\right)$ and from j to the new node $\left(v_{j}\right)$ as

$$
\begin{aligned}
& v_{i}=\frac{1}{2} D_{i j}+\frac{1}{2}\left(u_{i}-u_{j}\right) \\
& v_{j}=\frac{1}{2} D_{i j}+\frac{1}{2}\left(u_{j}-u_{i}\right)
\end{aligned}
$$

4. Compute the distance between the new node $(i j)$ and each of the remaining tips as

$$
D_{(i j), k}=\left(D_{i k}+D_{j k}-D_{i j}\right) / 2
$$

5. Delete tips i and j from the tables and replace them by the node, $(i j)$, which is now treated as a tip.
6. If more than two nodes remain, go back to step 1 . Otherwise, connect the two remaining nodes (say, ℓ and m) by a branch of length $D_{\ell m}$.

Properties of Neighbor-Joining

- The same complexity as average linkage hierarchical clustering $\mathcal{O}\left(n^{3}\right)$
- Guaranteed to return the correct answer if the distance matrix D originates from a tree
- Works also for non-ultrametric trees

Further links

- More information: Inferring phylogenies J. Felsenstein
- More advanced methods based on probabilistic approaches (Maximum likelihood, Bayesian approaches)
- Tree reconstruction might give different results for different genes, we will discuss this issue later
- Pairwise distances might lead to "unrealistic" phylogenies, We will discuss this problem next week.

