Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

Efektywne algorytmy do porównań sekwencji

Bartek Wilczyński

12. marca, 2018

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Sac

How sequences evolve?

・ロト ・ 同ト ・ ヨト ・ ヨト

= √Q (~

Efektywne algorytmy do porównań sekwencji

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

image (c) BW

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Efektywne algorytmy do porównań sekwencji

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

- How far in evolution are sequences we can observe in different living species?
- More formally: Can we define a measure of sequence similarity

$$d: \Sigma^* \times \Sigma^* \to \mathcal{R}^+$$

approximating the true evolutionary distance?

• Hint: We should count the number of mutations leading to the observed divergence.

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Mutations occur on DNA level, but selection acts much higher: on the phenotype level.
- This makes the assumption of base independence invalid
- Long evolutionary times violate time-reversibility
- Multiplicative measure not too convenient in practice
- We can only account for substitutions, not for insertions or deletions

Suggested solutions:

- Use protein sequences for comparisons
- Define additive substitution matrices

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

- We are still assuming time-reversible Markov chain, but now in space of protein sequences.
- Matrix entries contain log-probabilities, leading to additive measures of similarity
- PAM (Point accepted mutations) matrices (Dayhoff, 1978) describe observed probabilities of occurence of point mutations for a given average divergence (PAM1 = one mutation/100 bases, mostly used PAM250)
- BLOSUM (BLOcks Substitution Matrix) (Henikoff, Henikoff 1992) were constructed using short protein alignments (Blocks) of given sequence identity.
 e.g.BLOSUM80 was derived from sequences of ≥ 80% identity

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

Υ v QEGHILKMFP S Т A R Ν D С -1 -1 0 -2 -1 -2 -1 -1 -3 -1 1 0 - 3 - 2 = 00 -3 0 -4 -3 3 -2 -3 -3 -1 -1 -3 -1 -3 5 - 2 - 1 - 2 - 1А R 1 -3 -4 0 -2 -4 -2 2 -1 -1 -4 -4 -1 -4 -5 -1 0 -1 -5 -3 -4 N 0 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1 D -313 -3 -2 2 0 -4 -1 0 -1 -1 -1 -3 -4 -3 1 -2 -3 -1 -1 -1 -3 -2 -3 -3 0 Е -10 - 2 - 3 - 3 - 4-2 -4 -4 -2 -3 -4 -2 -28 0 - 3-310 -4 -3 0 -1 -1 -2 -1 -2 -3 2 - 40 - 20 Η 0 - 3 - 3 - 1 - 32 - 3 - 4 - 4 - 4 52 -32 Т 5 - 31 - 4 - 3 - 1 - 2 - 1-2 -2 -3 -4 -32 3 $0 -3 -3 \quad 6 -2 -4 -1$ 2 -2-3 - 2 - 3Κ 0 - 2 - 3 - 13 - 2-1 - 2 - 2-22 7 0 - 3 - 2 - 1-4 8 - 4 - 3 - 2-4 - 3 - 4 - 10 1 -1-1 -2 -2 -3 -4 -1 -3 -4 **10** -1 $0 - 1 - 3 - 3 \quad 0 - 2 - 3 - 1$ S 1 - 15 -2 -2-1 -1 -2 -2 -1 -1 -1 -1 -2 -1 т 0 - 10 - 15 - 3 - 20 -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1 1 -4 -4 -3 15 W 2 - 3-2 - 1 - 2 - 3 - 3 - 1 - 2 - 3 - 2 - 1 - 1 - 2 - 0 - 4 - 3 - 2 - 2Y 2 8 - 1 $\overline{0}$ -3 -3 -4 -1 -3 -3 -4 -4 4 1 -3 1 -1 -3 -2 $\overline{0}$ -3 -1 77 5

Log-odds log $\frac{P_{x,y}}{Q_x Q_y}$ instead of probabilities or substitution rates. ^{image} (c) Durbin et al.

Blosum50 matrix

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

Quiz - using silent mutations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We know two types of mutations in DNA silent and coding

- Which of them are more interesting for calculating divergence between species?
- And which are more interesting for paternity testing?

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

- Hamming distance: a metric originating from Information theory
- Given two vectors of the same length, it returns the number of positions where they differ.

 $D_H(s_1, s_2) = \sum_{i=1}^n \{1 : s_1[i] \neq s_2[i]; 0 : otherwise\}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• A proper distance (satisfies triangle inequality)

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- DNA polymerase can (rarely) slide over nucleotides
- especially over stretches of low complexity
- this leads to short deletions of DNA after replication
- Transposable elements lead to insertions of larger segments
- Chromosome recombination leads to duplications and deletions on different chromosomes at the same time

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sar

Number of mutations needed to *evolve* two sequences from a common ancestor is the same (under parsimony assumption) as the number of mutations needed to *evolve* one into the other

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

- Classically, genes are the **basic units of heritability**
- Gregor Mendel (1822-1884) laid foundations of genetics with his experiments on peas
- He also introduced the term allele and formulated laws of inheritance (segregation and independence)
- He knew nothing about DNA!

Genes - modern view

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Efektywne algorytmy do porównań sekwencji

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

- $\bullet\,$ Currently, we know that genes are carried by DNA
- Current definition of a gene is substantially more complex:
- a locatable region of genomic sequence, corresponding to a unit of inheritance, which is associated with regulatory regions, transcribed regions, and or other functional sequence regions (Pearson, Nature, 2006)
- This is overly complex for our purposes, so
- We will be most concerned with *protein coding genes*, i.e. DNA sequences encoding proteins

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

- We can introduce *edit distance*: the number of editing operations needed to transform one sequence into the other. These operations are:
 - Substitutions
 - Insertions
 - Deletions
- The *procedural* definition of the distance makes it difficult to work with
- Does it matter in what order I make the operations (*If i delete a character, I cannot substitute it anymore...*)
- It turns out the *optimal* edit distances are simpler and can be described in a formal way as sequence *alignments*

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

For a given sequences s, t over an alphabet Σ , their alignment is a pair of words s', t' over the extended alphabet $\Sigma' = \Sigma \cup \{-\}$. Sequences s', t' need to satisfy the following:

•
$$|s'| = |t'|$$

1

•
$$s'_{|\Sigma} = s$$
 and $t'_{|\Sigma} = t$

• for no position i, s'[i] = t'[i] = -

For example, one of the words HEAGAWGHEE and PAWHEAE is HEAGAWGHE-E --P-AW-HEAE

Number of possible alignments for words of length n

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \simeq \frac{2^{2n}}{\sqrt{\pi n}}$$

Scoring alignments: binary dotplots

Efektywne algorytmy do porównań sekwencji

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

Scoring alignments: BLOSUM score matrix

-

1

590

Bartek Wilczyński

Reminding sequence evolution

From evolution t distance

Sequence alignment

Dynamic programming approach

Recursive equation for sequence alignment

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

Sac

Э

	Н	Е	A	G	A	W	G	Н	Е	Ε	
P	-2	-1	-1	-2	-1	-4	-2	-2	-1	-1	
A	-2	-1	5	0	5	-3	0	-2	-1	-1	
W	-3	-3	-3	-3	-3	15	-3	-3	-3	-3	
Η	10	0	$^{-2}$	-2	-2	-3	-2	10	0	0	
Ε	0	6	-1	-3	-1	-3	-3	0	6	6	
A	-2	-1	5	0	5	-3	0	-2	-1	-1	
Ε	0	6	-1	-3	-1	-3	-3	0	6	6	

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach $F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j), \\ F(i - 1, j) - d, \\ F(i, j - 1) - d. \end{cases}$

image (c) Durbin et al.

Filling in the alignment matrix

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Sac

Tracing back alignments

イロト イポト イヨト イヨト

E

Efektywne algorytmy do porównań sekwencji

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

Η Ε Α G Α W G Η Ε Ε -8 -16 --24 - $-32 \leftarrow -40 \leftarrow -48 \leftarrow -56 \leftarrow -64 \leftarrow -72 \leftarrow$ -80 0 • ĸ Ρ -17 🗲 -8-2-9 -25 -33 -10 --57-65-73 ٠ . κ. ٠ K Α -16-10-20 --3-4 4 -12-28 --36 --44 --52 -60 ٠ ۰ ĸ W -24-18-7 -15-5 -13 < -21 -29 -37 -6 π. ۰ . Η -14-18-13-8 -9 -13-3-11 -19 -7 4 ŧ ÷ κ. ۰ Е -40-8-16-16_9 -12-15-5 + 3 ٠ ŧ Α -48 -30-12-16-3 + -11-12-152 ŧ ŧ ŧ Ε -56 -38 -24 -12-14-15 -12-11-6 _9 1

HEAGAWGHE-E --P-AW-HEAE

Bartek Wilczyński

Reminding sequence evolution

From evolution t distance

Sequence alignment

Dynamic programming approach Finding local alignments - Smith, Waterman '82

$$F(i, j) = \max \begin{cases} 0, \\ F(i-1, j-1) + s(x_i, y_j), \\ F(i-1, j) - d, \\ F(i, j-1) - d. \end{cases}$$

		Н	Ε	А	G	А	W	G	Η	Ε	Ε
	0	0	0	0	0	0	0	0	0	0	0
Р	0	0	0	0	0	0	0	0	0	0	0
A	0	0	0	5	0 ~	5	0	0	0	0	0
W	0	0	0	0	2	0	20 ←	12 🗲	4	0	0
н	0	10 ←	2	0	0	0	12	18	22 🕂	14 🔶	6
Е	0	2	16 🔶	8	0	0	4	10	18	28	20
A	0	0	₹ ~ 8	21 🔶	13	5	0	4	10	20	27
Е	0	0	6	13	18	12 🔶	4	0	4	16	26
AWGHE											
AW-HE											

Bartek Wilczyński

Reminding sequence evolution

From evolution to distance

Sequence alignment

Dynamic programming approach

Scoring alignments: general gap penalty

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

3

General gap penalty

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j), \\ F(k, j) + \gamma(i-k), & k = 0, \dots, i-1, \\ F(i,k) + \gamma(j-k), & k = 0, \dots, j-1. \end{cases}$$

Affine gap penalty (caching)

$$M(i, j) = \max \begin{cases} M(i-1, j-1) + s(x_i, y_j), \\ I_x(i-1, j-1) + s(x_i, y_j), \\ I_y(i-1, j-1) + s(x_i, y_j); \end{cases}$$

$$I_x(i, j) = \max \begin{cases} M(i-1, j) - d, \\ I_x(i-1, j) - e; \end{cases}$$

$$I_y(i, j) = \max \begin{cases} M(i, j-1) - d, \\ I_y(i, j-1) - e. \end{cases}$$