Wstep do biologii obliczeniowe]

Wyktad 12 -
Mapowanie krotkich odczytow
DNA do genomu

Bartek Wilczynski

29V 2018

Next Generation Seguencing

DMA fragmentation DMA fragmentation ® N G S g Ives m I I | I O n S Of

SRRV VRNV, SRR AAVAVRYAY)

1 short reads (30-

S—— — 200bp) instead of 1

- taken — .~ longerread (up to few
Kb)

oy Loy et || oo cienaoens | — DesSK-size devices,

—
s
-

+

o
2
ek
i
|- |
0

‘-...CACCGCATCGAAA...-5" (template)
.. GTGGCG (primer

-..GTGGCGT-O)
"-...GTGGCGTA{)
-..GTGGCGTAG{)

- costly chemistry (in
1000% range for ~1TB
of data)

— error rates ~0.0001

with pnl:,'n1e=|.=|=u=., dMTPs,
-.GTGGCGTAGC) and labelled ddNTPs

'-...GTGGCGTAGCTL)
"-...GTGGCGTAGCTT-(O)
"-..GTGGCGTAGCTTT-(O)

I R B R R A A

GTGGCGTAGCTTITAATTGAAGGTTT

Single molecule sequencing

| * Single molecule
seguencing is in the
prototype phase — gives
even longer reads (up
to 100kb), but with large
error rate (~10%)

« Small devices for single

use are promised to

. O)_(fprd nanopore cost below 1000%$
MinilON on the ISS

(Aug 2016)

How to map a short sequence
to the genome?

* We frequently sequence DNA originating from a
genome closely related to a known one (e.g.
human patient samples, bacteria, viruses, etc)

* Even though they are closely related, they are not
iIdentical (remember, mutations?)

» Seguence reads are short (30-100), genomes are
long (up to 10°10)

* Obviously we need faster methods than Dynamic
programming

Text searching algorithms

« Exact searching (Knuth-Morris-Pratt, Boyer-
Moore) : not applicable

 Many reads and one genome — we would like to
Index the genome to be able to process the reads
quickly

 We need to take errors and variants into account,
but hopefully not too many of them in a single read

* We should consider text indexes (Suffix trees, suffix
arrays and Burrows-Wheeler transform)

Suffix tree

Suffix tree

. . Suffix tree for text ababba
» every edge is labelled with a text

substring

» |abels from consecutive edges on
pathes from root to leafs constitute
suffixes

» each suffix is represented in this
way and corresponding leaf is
labelled with its position in the text

» |abels of sibling edges begin with
different symbols

Index size: > 10| T| bytes
Matching time: O(|P| + |occurences|)

Suffix array

Suffix array contains starting position suffix | SA entry
positions of lexicographically 0 | ababba% | SA[0]=0
ordered suffixes 2 abba} | SA[1]=2
5 a$ | SA[2]=5

1 | babba% | SA[3]=1

4 ba$ | SA[4]=4

Suffix array for text ababba 3 bba} | SA[5]=3

6 $ | SA[6]=6

Index size: 4 - |T| bytes
Matching time: O(|P| - log|T| + |occurences|)

with additional LCP table
Index size: 5 |T| —8-|T| bytes
Matching time: O(|P| + log|T |+ |occurences|)

Burrows-Wheeler transform

Burrows-Wheeler transtorm
contains symbols predecessing

lexicographically ordered suffixes. posmog al:?:l]:c)fli)); 3 gw$ gnir%/
BWTI[i] = T[SA[i] — 1] 2 | abba%ab BWT:l:=b

5 | a%ababb | BWT[2]=b

1 | babba%a | BWT[3]=a

4 | ba%abab | BWT[4]=b

Burrows-Wheeler transform for 3 | bba%aba | BWT[5]=a
text ababba 6 | $ababba | BWTI[6|=a

Last-to-first mapping

Cyclic shifts

of text ab bba$. _
Last-to-first mapping

LF(i) is the position in column F

6 Zb s ; Sﬁ(\)[f] LF6[’] of the i-th symbol of column L.
1| bba%ab | 2 3 Observation

2 | adab bb | 5 4 SA[i] = SA[LF(i)] + 1

3| b bba%a 1 0

4 | ba%ab b 4 5 Corollary

5 | bba$ab 3 1 SA[i] = SA[LF<(i)] + k

6 | $ab bba 6 2

Computing last-to-first mapping

Cyclic shifts
of word ab bba$

I | F L
0 | ab bba$
1 ba%a
2 | a%ab bb
3 ba%$a
4 | ba%a

5 | bba%a

6 | $ab bba

Observation
Occurences of symbol x in columns F and L
are ordered accordingly.

Proof
The order is determined by suffixes
following occurences of x.

C(x) number of occurences of symbols
lexicographically smaller than x in T

Occ(x, 1) number of occurences of symbol x in

BWTIO : i]

Observation
LF(i) = C(BWTIi]) + Occ(BWT]i], i)

Extracting text
Structure for extracting text
» Burrows-Wheeler transform of T
» array C
» regularly sampled values of arrays Occ(x,)
>

array with regularly sampled values of SA™!

Algorithm

1: function EXTRACT(begin, end)

2 p < cache[[end/ CacheEvery,,, |] > Get the closest cached position after end
3 dist < end — end mod CacheEvery,, .,

4 while dist > 0 do > LF-map to the end position
: p+ LF(p)

6 end while

7 dist < end — begin

8 result = e

9: while dist > 0 do > LF-map and extract next begin — end characters
10: result = BWT[p] + result > Prepend current character to the result
11: p + LF(p)

12: end while

13: return result

14: end function

Backward searching

Structure for backward searching
» Burrows-Wheeler transform of T
» array C

» regularly sampled values of arrays Occ(x,)

Algorithm

1: function FIND(Q1)
2: sp +— C(Qm)

3: ep—C(Qmn+1)—1

4: fori <~ m—-—1,1do

5: sp=C(Q;) + Oce(Q;,sp—1)+1

6: ep = C(Qi) + Oce(Qi, ep)

7: if ep > sp then

8: break > No matches, jump out
9; end if

10: end for

11: return (sp, ep) > The opaque result is just a range in the BWT array

12: end function

Suffix indexes

Suffix tree suffixes = paths from root to leaves

» index size: > 10 - [genome| bytes
» exact mapping time: O(|read| + |occurences|)

Suffix array lexicographic order on suffixes
» index size: > 4 - |genome| bytes
» exact mapping time:
O(|read| - log |genome| + |occurences|)

FM index self-index based on Burrows-Wheeler transform

» index size: < 1-|genome| bytes (including
sequence!)

» exact mapping time: 2-1000x slower than suffix
arrays

Operations in Ferragina-Manzini index

Find(Q) — R searches for all occurrences of sequence Q and
returns an opaque result R that can be used with
other operations.

FindSuffixes(Q1..m) — Ri..m works just like Find, but returns
results for each suffix of @ so that R; is the result of
searching for Q; m.

FindContinue(Q1. m, Roid, f) — Rnpew Jjust like Find searches for all
occurrences of Q1_m, but takes advantage of an
earlier result R,;y, assumed to be obtained by
searching for Qr .,, and returns a new result Ryew.

Count(R) — k returns the number of occurrences k represented by

R.

Locate(R) — h_x returns locations of occurrences represented by

R.

Extract(b, /) — S retrieves a subsequence of the reference
sequence T: S=T[b..b+1—1].

Bowtie (Langmead et al. '09)

Seed — high-quality part of the read (default: first 28bp)
Policy

Search for read occurences in the genome with

» limited number of errors in the seed (default: first 28bp),

» limited sum of quality values of mismatched positions in the
whole read.

Algorithm

» Genome index is searched with k-neighborhood of the seed of
a read.

» |Located occurences are extended to whole read mappings and
the quality criterion is checked.

Something about SNPs

 Single nucleotide polymorhism (SNP) a position
In the genome where a natural variation Iin
population occurs

Growth of dbSNP, 2002-2012

200
180
_ 160
0
c
O 140
E 120
n
o
= 100
(7]
L —
EBU Sub
[~Ref.
L
E &0 Validated
=z
40 /
— e — -_-‘ijif
1w oW o 0w D o ";-"-’-.M
o el B ol o Bl bt i o ol Rl R rﬂ.&
[=3 By 2 M ok = L =
O & d o m o, 0 3 = O m o =2 =2 O @ & o o By @ & e 72 L
massgenomics
.org

dbSNP Release

Genotyping vs. Sequencing

Many commercial

services offer genotyping

(usually not sequencing)
for very low prices

Some of this information
might be important if you
are sick

Most of the information
provided by such
companies is pure noise
and correlative data

Data security is a big
ISsue

g‘é
deCcODE =i genetics

iiiDATHWAY GENOMICS’

’

/ Yen

l — & Genotek

\

3a
ny\

Y10 Tako

PMAERER

/
7/ '\ Personal Genome §

\\\\\\\\\

§) =i xxm

f GRS

welcome
toyou

Find out what your
DNA says about you
and your family.

» k<3

» Double indexing:
FM-index is build for a
genome sequence
(forward index)
and for a reverse

sequence (mirror index).

Bowtie — avoiding excessive backtracking

lo-half hi-half
lgccg.. | |..agcal
— _
Phase 1 | | e
=20 0-2 0
Mirrorindex
Forward index
Phase 2 [acga..] | ..gccg]
=120
Forwardindex .0)
Mirror index
|gccg... | .,.agcal
| >0 | From Phase 2
Phase 3 >
lgccg... | [..agcal
I >0 | 1 | ’ |

BWT mapping summary

» Effective tools are used in short read mapping
using BWT and FMI

* Index can be linear in genome size and match
finding with small (<3) number of mismatches is

feasible

* Large number of mismatches works against
these methods

Even faster read mapping?

* Sometimes we can agree to a worse mapping
efficiency (some random reads not mapped) if it
Increases the speed of overall mapping

* This is In particular true in cases where we want
to count reads rather than identify the variants

* One such case Is mMRNA expression profiling,
when we are interested In relative abundances
of fragments of the reference sequence

RNA-seq data preparation

(@) mRNA or total RNA

L y— L f—
=] =
[—
C =

[J [J

Remove rRNA?
Select mRNA?
@) Fragment RNA

——
=
p— _ -
(—
— —=
(®) Reverse transcribe 1

into cDNA
EESteis
-
o
Eree poeno

S

By |0 oo

Strand-specific RNA-seq?
() Ligate sequence adaptors

e

ST o apn
Se—s
s S

J PCR amplification?
(® Select a range of sizes

SIS S
@@
SRS S

(@ Sequence cDNA ends l

J. A. Martin and Z. Wang Next-generation transcriptome assembly. Nature Reviews 2011.

RNAseq Reads mapped to the genome

chra:
234

brain RMNA

0.04 _

3TS Markears

26559200 | 26659300 | 26559400 | 26559500 |
brain RMNA

STS Markers on Genetic and Radiation Hybrid Maps

UCSC Gene Predictions Based on ReiSeq, UniProi, GenBank, and Gu Iria\t '.rle

-E}

an
sEas __ il i
_....IIIIIII I ill IIIII'IIIII'
' (IINUNUONUNTNN

Refseq Genes

Mouse mRMNAS from GenBank

PRI IR
BO034655 n—————— D EVE IRV EEERIRE

STAR — ultrafast read mapping
(Dobin et al. 2012)

(a) Map Map again
MMP 1 : MMP 2 Table 1. Mapping speed and RAM benchmarks on the experimental
T ~ RNA-seq dataset
' RNA-seq read
]
' Aligner Mapping speed: million Peak physical
read pairs/hour RAM, GB
exons in the genome 6 threads 12 threads 6 threads 12 threads
(b) (c) STAR 309.2 549.9 27.0 28.4
STAR sparse 227.6 423.1 15.6 16.0
Map Map TopHat2 8.0 10.1 41 113
MMP1 Extend MMP 1 Trim RUM 5.1 7.6 269 53.8
> > > > MapSplice 3.0 3.1 33 3.3

mismatches A-tail, or adapter,
or poor quality tail

Alignment free RN %

guantitation

 Sallfish method
(Patro et al. 2014)

* \We can simply count
unique k-mers in the
reads and use only
those to quantify
transcripts

e 25X speed
Improvement, without
much loss In
accuracy

Reference transcripts

Index [
(per transcriptome & |
choice of k) |
|
|
|
I
|

Perfect hash function |(1)

Array of k-mer counts |(2)

Transcript k-mer T
to contained| |to containing = = T
k-mers transcripts —_— =

\ (3) (4) - —

|
Hashable k-mers —

[Aggregate counts]

v

Estimate transcript
abundances from Tl

/ --I:l [alal f 0.g
I I | | | 11 | 1] I | | allocated k-mers N
annalnnanlalln s

: :

Quant (| tersect reads with | Unhashable
(per set of reads) indexed k-mers k-mers \‘

Transcripts with Reallocate Average k-mer
current k-mer \\ k-mers based coverage
allocations on abundance

estimates

Kallisto - even faster quantitation

» Kallisto method (Bray
et al. 2015)

bI | : : |

» Introducing a graph of 00{@ Z
overlapping k-mers for e T
;: O=~0~0

c
the different
transcripts as an index q
- Better implementation o9 2
gives another 10x . e

speed improvement

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25

