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Organizacyjne

• Materiały do dzisiejszego wykładu:
• Biol. Sequence Analysis, Durbin et al. Chap. 5
• Protein alignment - Hmmer webpage
http://hmmer.janelia.org/

• Gene finding - Glimmer webpage
http://ccb.jhu.edu/software/glimmerhmm/
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How proteins work

• Proteins – long chains of aminoacids – are the the building
blocks that all living organisms are made of

• Most globular proteins have a native 3-dimensional
structure, i.e. the structure they fold to in natural
conditions

• The function of a protein is determined (to a large degree)
by its overall 3d-fold and the aminoacids placed in its
active sites
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Markov Models - refresh

• The model consists of a state space Q 6= ∅ (for our
purposes Q is finite)

• and a transition probability matrix pij where i , j ∈ Q

• The model has no memory, the probability of moving from
state i to j depends only on the state i .

• Higher order MMs can be simulated on a 0-order
(memory-less) MM by increasing the alphabet size
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Hidden Markov Model

image (c) wikipedia
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Hidden Markov Model - summary

• For a given HMM, we can simulate its trajectories and
calculate the probability of generating a word given a
trajectory

• If we know the word generated by a known HMM, we can
use Viterbi algorithm to find out the probabilities of all
trajectories leading to this word

• If we know the states and emissions we can use a large
training body to find (locally) optimal transition and
emission matrices by Baum-Welch algorithm.

• While the notion of time is natural for Markov Models for
DNA sequence evolution, HMMs very frequently use their
“time” to represent generating sequences (e.g. the CpG
island model)
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Sequence profile as an HMM

If we have a sequence alignment, we can represent it as a
chain-like HMM, with

• one state for each position

• 1-off-diagonal transition matrix

• emission matrix reresenting probabilities of “observing”
each character at each position

image (c) Durbin et al.
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HMM alignment and protein structures

Conserved protein structures have residues with certain
preferences for different AAs (HMM states)

image (c) Buschiazzo et al. 2004 EMBO J.
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HMM alignment and protein structures

This can be seen in their structural alignment (a difficult
problem itself)

image (c) Sayers and Bryant
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HMMs with insertions

HMMs also include additional states for generating sequences
with insertions (new residues)

image (c) Durbin et al.
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HMMs with deletions

HMMs also include additional states for generating sequences
with deletions (lost residues)

image (c) Durbin et al.
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HMMs alignment with all states

(almost) Complete set of states

image (c) Durbin et al.
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HMMs alignment with all states

And now also with emissions

image (c) Durbin et al.
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HMM alignments - properties

Using an HMM profile, we can

• sample “random” sequences conforming to the model (by
simulating trajectories)

• align a new sequence wih it (using the Viterbi algorithm)

• represent different preferences for insertions/deletions for
different parts of a protein

• We can even (with some care) align two different HMMs
with dynamic programming

• But can we reconstruct HMMs from data?
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HMM construction from multiple alignment

Assume we know the alignment and the “residue” positions

If we don’t know the gap positions, we can use a dynamic
programming approach
image (c) Durbin et al.
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Local HMM matching

We can also model a local substructure (domain) of a protein
by an HMM, then we need an HMM able to perform “local”
alignmnent to a query sequence:

image (c) Durbin et al.
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Multiple Local HMM matching

Such local substructure (domain) can occur multiple times in a
query sequence:

image (c) Durbin et al.
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Gene finding - Problem statement

• When sequencing a new genome (done on a daily basis
now...) we get only the DNA sequence, no annotation

• We know there are protein coding genes, but we don’t
know where they are

• For many genes, we can find their transcripts by extracting
RNA from the cells and sequencing it (EST libraries)

• This will not work for many genes (e.g. rarely transcribed)
and is quite expensive (another round of sequencing...)

• Knowing all the genes is important for most functional
studies and we need computational (cheap) ways of doing
it
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Gene finding - typical approach

• Given the start and stop codons, for any genome
sequence, there is only limited number of Open reading
frames (ORFs) - subsequences beginning from a start
codon and finishing with a stop codon.

• We know the codon-code, so we can find all possible
ORFs in linear time (using compressed representation).

• Not all ORFs are genes: there are many short sequence
motifs which enable transcription of a given orf, but we
don’t necessarily know all of them (and they may vary
between species).
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Transcription initiation

image (c) pingrysmatteam
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Representing TSSs by Higher order Markov Models

• We can use a higher-order markov model to represent gene
sequences (to account for dependencies between positions)

• We can train them on known genes (from EST libraries,
human annotation or high confidence predictions)

• Because some motifs are long, we need a high order MM
( 8), but this requires very many training examples

• This can be solved by using a “variable order MM”
(VOM) or interpolated Markov Model (IMM) which uses
higher order dependencies only for frequent enugh words
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GlimmerHMM

image (c) glimmerHMM
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