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Topics for the course

Sequences in Biology — what do we study?

Sequence comparison and searching — how to quickly find
relatives in large sequence banks

Tree-of-life and its construction(s)

Short sequence mapping — where did this word come from
DNA sequencing and assembly — puzzles for experts
Sequence segmentation — finding modules by flipping coins

Data storage and compression — from DNA to bits and back
again

Structures in Biology — small and smaller



Markov Models

The model consists of a state space Q # () (for our
purposes Q is finite)

and a transition probability matrix p; where i,j € Q

The model has no memory, the probability of moving from
state / to j depends only on the state /.

multiplying the matrix P, we can compute the change of
the probability distribution as the model “steps” forward

We are usually interested in stationary distributions T,
such that m- P =P



Hidden Markov Models
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Trajectories of HMMs

 The Markov model changes states (Xs) over
time using transition matrix

« At each state a random symbol is emitted
based on the emission probabilities

P(Xir1]|Xy)

P(}’f+'l ‘XH] )



HMM example




Reconstructing trajectory states

For any trajectory 7, we can calculate the probability of
emiting S

n—1

j)l aS‘. :T:' — | I f"r;;'f_;]': [It-H'lr _+" -I»:l -:' ) [".‘I’?I'f:.."'fl:f%—l:'

=\
Can we find the optimal trajectory m, given 57

P(S,n,) =max{P(S,n) | # € Q*, |x| = [S|}.



Viterbi algorithm

We can use dynamic programming, filling in the v(i, k) matrix

v(i, k) = max{P(S|l..i|,n) | 7 € Q', =(i) = k}.

-

with the initial condition:

0(0.k) = 4 ady k = ko,
and step function:

(i, k) = er(S(1)) - J’;‘I(l,!'[f"“ - 1.1) - prxl.
| 7 1eqQ |

To finally read out the seeked probability:

P(S,w.) = mazx|v(|S|, k)|.
| keQ) |



The forward and backward
probabillities of trajectories

Now, we can calculate the probability of emitting S, over all
possible trajectories, with the Forward-method. The initial step

Is as follows:

!t“ ”"| _ {1 f,_'_\'[].\+ }f — A‘“‘

0 gdv Kk F# k.
Then, we make similar steps:
f(i, k) = ex(5(2)) - E Sf(i—=1.1) - pix.
= [__}

and finally we can calculate the total probability at the end:

P(S)= > _ (S|, k).

![.'-.—(__)
The same works backwards:

b(i,k) =  pra-eal(S(i+ 1)) - bli+ 1,1).
l=0)



Where were we at time t?

Putting it together, probability of being in state k at step 1,
given S:

P(n(i) = k | S) Pr(i)=k & S) f(i. k)-b(i, k)
nil) = K D ) = — — ~ |
. ) 1]| .k) :' IJ'I .“) _:*

Given the sequence of emitted symbols, we can
estiimate the likely states of the hidden system



The emission matrix can be then
estimated

Estimate of the Emission matrix:
Ei(x)
Zq&lﬁ E y)

Can be calculated using f and b
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As well as the transition matrix

Similarly the transition matrix:

»
k.
Pkl = ,
qu (‘) 1_".{{

depends on f and b
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Baum Welch algorithm

Suppose, we only know the word S and the sets Q and X.
Can we estimate both p;; and ¢;;?

We can start with random p;;, e;; and iteratively proceed
as follows:

e (Calculate the estimates of being in each of states at each
step using f, b and current estimates of e, p.
e Find the optimal e, p, given current e, p,f, b

This is an example of a known procedure called
expectation-maximization

It is proven to converge to a local optimum.



Expectation-Maximization

a Maximum likelihood
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Protein structure

Primary Structure Secondary Structure

Amino acids Beta sheet Alpha helix

Quaternary Structure:




Protein domains
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Profile HMMs

Hidden Markov Models and their Applications in Biological Sequence Analysis

(a) Sequence Alignment

Seq 1 5 —>—3k C - G
Seq 2 5——T C A C
Seq 3 5 —>—3l G A G
Seq 4 5—+—T C A Cc
Seq5 5—— - C A C

(b) Ungapped HMM

A—— 3
A—— 3
—b— 3’
- —p— 3
——r— 3’

(C) Profile-HMM

Start | |

Current Genomics, 2009, Vol. 10, No. 6 407

M,| Match states

Match states
End @ Insert states

@ Delete states




Finding a domain In
a longer protein sequence
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PFAM seguence annotation

HOME | SEARCH | BROWSE | FTP | HELP | ABOUT Il ‘om

. [epwordsearch (D)
Protein: VAV_HUMAN (P15498) = & = >

EMBL-EBI :

1 architecture 1 seqﬁem:e 0 interactions 1 épecies & structures
Sequence
This is the summary of UniProt entry VAY HUMANCY (P154980F).
Structures
Description: Proto-oncogene vav
TreeFam

Source organism: Homo sapiens (Human)cf (NCBI taxonomy ID 960607)
View Pfam proteome data.

Jump to... ¥ Length: 845 amino acids

enter IDjacc E Reference Proteome: .~

Please note: when we start each new Pfam data release, we take a copy of the UniProt sequence database. This snapshot of UniProt forms the basis of the overview that you see here. It Is Important
to note that, although some UniProt entries may be removed affer a Pfam release, these entries will not be removed from Pfam untll the next Pfam data release.

Pfam domains

This image shows the arrangement of the Pfam domains that we found on this sequence. Clicking on a domain will take you to the page describing that Pfam entry. The
table below gives the domain boundaries for each of the domains. More...

@mCHiuw —  uRhoGFES) (EHa- 1 I —

Download the data used to generate the domain graphic in JSON format.

Pfam CH 1 121
low_complexity 41 50
disorder 128 129
disorder 140 141
disorder 160 161
disorder 173 177
disorder 179 180
Pfam RhoGEF 198 371
low_complexity 355 366
Pfam PH 403 504
ci1 516 568

disorder 568 588
Pfam SH3 1 615 652
disorder 635 636

S5H2 671 745
Pfam SH3 1 788 834
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Segmentations

Signal tracks

ChlIP data from ENCODE project

Chrzz: I 461000001 46200000 | 463000001 464000001 46500000 |
GENCODE v7 genes m 1 —_— ] 3 — G ————— B Tt i
ChromHMM [ B H Sl | I N [ e eS| | e e e | ] =
Sagway (FS AR § V6 I (TR T (ISURS SUC] WIS WINUINTE (S EYURNITE 16 W T 110 D8] W11 BN AR | I 0§ EEEE LWL ET W (T FRTHTI H BRI |
e o T fenk e s e B TP P T T VT AL VTV L
combined CTCE | | 1 | (I | 1 11 II
+EE b ' i [ i i b s
UW DNase | 5 [N — M - PP I. » M » M o
C;.:'_;;_." C !',g-:n', [:‘-"a:.;. L B bl o i I.._J. l L II .i J_L _.l

FAIRE

H3Kdme1 __.l..h_n.u‘u‘_.-.__..._._.l.._h- B i - -I-_._.Ln..-._h..._._nl...n_d._d.-._..._._.._l_l_l_..l_ﬂ.n
H3K4me2 L . e, Aid a b ol LLLH_I ' ¢L

H3K4me3 l

H3K9ac { lx-J- —-‘- i | I l.l_.h s ,I.

H3K27ac s . 1.—.

]

H3K36me3 Aot ool

CTCF I i

Pol | L 1 | A "

Input control e L



Chromatin Immunoprecipitation data
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, Raw data (red: IP; blue: Cnntrnl GST; green Control- Irrput}
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(Ji&Wong 2005,
Bioinflormatics)

 Hidden Markov
model for
segmentation of
ChIP data with 2
states:

— 0 — no enrichment
- 1 - enrichment

e Emissions are
Gaussian



Emission model in TileMap

Illustration

h(t)

Real Data Example

Observed Mixture
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Using Gaussian HMM
for Stock Market
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ou can use HMMs for chromatin

53 chromatin proteins
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Gene 3

Using PCA to limit
the emission space dimension

* Principal component analysis Is a method of

identifying orthogonal vectors with maximal
variance in the multidimensional data

original data space

component space

maly




Independent multidimensional
emissions

ChromHMM is taking a different approach

One can assume that all of the different ChIP
measurements are independent of each other

Then instead of exponential emission explosion, we
have a matrix of emission probabilities for each state

For each observable ChIP we need the probabillities
vector for each hidden state

This Is even extendable to Gaussian emissions
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Emission matrix for Drosophila

Chromatin States Histone Marks —s"'ehmeni. | £
none high ]
3 2 B o ? & o © 'E 'E c M o 2 E
. o o v T T B I T o
State Annotation|g 22| £ 55 5§ E £ ¢ 8 2 5§ 8 F 2888 E E £ »
Summary glEG| ¥ E R EEEEEEEE BRI
- | D= ) (2] od ) [+ ] [xr] (3] = (a1 [y (] ™M o = Mg o (o] o -._E.
AKDE]lXT T X X T I X I X I I X I X Imm I T x| ©
d1 o 7 12 11
d2 nWOWw W By
. d3 45 13 L77
Active TSS/exon 7y m BT ==
ds ] 1 19 2 1.10
dé 41l 135
d7 44 Ef] 239
H - dd 1 15
Active exon, elongation 5 c2 - "
di0 7 300
dii I b 12 155
di2 n
e di3 n
Active intron, enhancer |d14]| ¢3 13 5 1 1 1.4
dis g n g 13 15 26/ 1.44
di6 1 15
di17 B n 2% i 13
d18 10 1 7 165
. |d19 15 3% 7 L
Open chromatin 420| 4 o T
d21 T 153
d22 1
Male X genes (DC), exon |d23] c5 1
_ d_24 I8 i | 11 bl 11 7 1.1
Polycomb |d25] c6 5.58
Heterochromatin g_g_g_ c7 ! 1 11§
Heterochromatin-like in euch|423] cs LE
. d29 35 PET,
 Basal, intergenic euchromatin [d30] c9

Modencode, Roy et al, Science 2010



Bayesian Networks and Dynamic Bayesian Networks
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Segway Dynamic Bayesian Network

Supplementary Fig. 11: Graphical model representation of the default Segway DBN.
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MNature ENCODE : Nature Publishing Group : A landmark in the understanding of Ehe human genome - Mozilla Firefox
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Voices of ENCODE

In this video, ENCODE's lead coordinator, Ewan
Birney, and Nature editor Magdalena Skipper talk
about the challenges of managing a huge genetics
project and what we’ve learnt about our genomes.
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Research papers in Nature
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the human genome Djebali, S., Davis, C.A. et al.
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On the Immortality of Television Sets: “Function” in the
Human Genome According to the Evolution-Free Gospel
of ENCODE

Dan Graur'*, Yichen Zheng', Nicholas Price', Ricardo B.R. Azevedo', Rebecca A. Zufall', and Eran Elhaik?

'Department of Biology and Biochemistry, University of Houston

“Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health
*Corresponding author: E-mail: dgraur@uh.edu.

Accepted: February 16, 2013

Abstract

Arecent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium
members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current
estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%.
Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies
that at least 80 — 10 = 70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever
occur in these “functional” regions or because no mutation in these regions can ever be deleterious. This absurd conclusion was
reached through various means, chiefly by employing the seldom used “causal role™ definition of biological function and then
applying it inconsistently to different biochemical properties, by committing a logical fallacy known as "affirming the consequent,” by
failing to appreciate the crucial difference between “junk DNA" and “garbage DNA, " by using analytical methods that yield biased
errors and inflate estimates of functionality, by favoring statistical sensitivity over specificity, and by emphasizing statistical significance
rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning
functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to neces-
sitate the rewriting of textbooks. We agree, many textbooks dealing with marketing, mass-media hype, and public relations may well
have to be rewritten.

Key words: junk DNA, genome functionality, selection, ENCODE project.



Protein structure prediction

« We can predict the protein sequence
from reading DNA, but we do not
know how it will fold to perform its
function

structure



Protein structure energy function

« Given our understanding of molecular dynamics, we
should be able to score different conformations of
the same protein chain

* This is expensive, as proteins contain thousands of

atoms
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Simplified Computational models of protein structure
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Anfinsen's ,,conjecture”

* Since proteins can fold in the real world, the
energy landscape should have a very strong

global optimum

Unfolded states

An astronomical number of conformations. A
100 residue protein, with 2 conformations per
residue has 2'° or 10¥different conformations

Folded or Native State

A single conformation (or, more correctly, a
collection of similar conformational
sub-states)




Computationally this Is difficult

* Even the simplest
model:

- hydrophobic/polar
representation of
residues

- On a rectangular
lattive

* |leads to a NP-hard
problem of finding
the optimal
configuration




CASP experiment

e Critical
Assessment of

Structure ' )  The Art of
Prediction methods #1.% Protein Structure
e Crystallographers ; Prediction

solve structures R ————
and release ——— for predicting the siructuresof protein,
sequences to

scientists so that

they can make

blind predictions



Gamification of protein folding

Figure 1| Foldit screenshot illustrating tools and visualizations. The
visualizations include a clash representing atoms that are too close (arrow 1);
a hydrogen bond (arrow 2); a hydrophobic side chain with a yellow blob
because it is exposed (arrow 3); a hydrophilic side chain (arrow 4); and a
segment of the backbone that is red due to high residue energy (arrow 5). The
players can make modifications including ‘rubber bands’ (arrow 6), which
add constraints to guide automated tools, and freezing (arrow 7), which

prevents degrees of freedom from changing. The user interface includes
information about the player’s current status, including score (arrow 8); a
leader board (arrow 9), which shows the scores of other players and groups;
toolbars for accessing tools and options (arrow 10); chat for interacting with
other players (arrow 11); and a ‘cookbook’ for making new automated tools
or ‘recipes’ (arrow 12).
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Predicting protein structures with a multiplayer

online game

Seth Cooper’, Firas Khatib?, Adrien Treuille?, Janos Barbero', Jeehyung Lee’, Michael Beenen',
Andrew Leaver-Fay*t, David Baker®*, Zoran Popovi¢' & Foldit players

People exert large amounts of problem-solving effort playing com-
puter games. Simple image- and text-recognition tasks have been
successfully ‘crowd-sourced’ through games', but it is not clear if
more complex scientific problems can be solved with human-
directed computing. Protein structure prediction is one such
problem: locating the biologically relevant native conformation
of a protein is a formidable computational challenge given the
very large size of the search space. Here we describe Foldit, a
multiplayer online game that engages non-scientists in solving
hard prediction problems. Foldit players interact with protein
structures using direct manipulation tools and user-friendly
versions of algorithms from the Rosetta structure prediction
methodology?, while they compete and collaborate to optimize
the computed energy. We show that top-ranked Foldit players
excel at solving challenging structure refinement problems in
which substantial backbone rearrangements are necessary to
achieve the burial of hydrophobic residues. Players working

retaining the deterministic Rosetta algorithms as user tools. We
developed a multiplayer online game, Foldit, with the goal of pro-
ducing accurate protein structure models through gameplay (Fig. 1).
Improperly folded protein conformations are posted online as puz-
zles for a fixed amount of time, during which players interactively
reshape them in the direction they believe will lead to the highest
score (the negative of the Rosetta energy). The player’s current status
is shown, along with a leader board of other players, and groups of
players working together, competing in the same puzzle (Fig. 1,
arrows 8 and 9). To make the game approachable by players with
no scientific training, many technical terms are replaced by terms in
more common usage. We remove protein elements that hinder struc-
tural problem solving, and highlight energetically frustrated areas of
the protein where the player can probably improve the structure
(Fig. 1, arrows 1-5). Side chains are coloured by hydrophobicity
and the backbone is coloured by energy. There are specific visual cues
depicting hydrophobicity (‘exposed hydrophobics’), interatomic
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Solving new HIV protein structure

nature
structural &
molecular biology

BRIEF COMMUNICATIONS

Crystal structure of a monomeric
retroviral protease solved by
protein folding game players

Firas Khatib!, Frank DiMaio!, Foldit Contenders Group, Foldit Void
Crushers Group, Seth Cooper?, Maciej Kazmierczyk?®, Miroslaw Gilski*4,
Szymon Krzywda?®, Helena Zabranska®, Iva Pichova®, James Thompson?,
Zoran Popovi¢?, Mariusz Jaskolski®* & David Baker!:

Following the failure of a wide range of attempts to solve the
crystal structure of M-PMV retroviral protease by molecular
replacement, we challenged players of the protein folding game
Foldit to produce accurate models of the protein. Remarkably,
Foldit players were able to generate models of sufficient quality
for successful molecular replacement and subsequent structure
determination. The refined structure provides new insights for
the design of antiretroviral drugs.

Structure Prediction (CASP) experiment was an ideal venue in which
to test this. CASP is a biennial experiment in protein structure predic-
tion methods in which the amino acid sequences of structures that
are close to being experimentally determined—referred to as CASP
targets—are posted to allow groups from around the world to predict
the native structure (http://predictioncenter.org/casp9/). Each group
taking partin CASP is allowed to submit five different predictions for
each sequence. Foldit participated as an independent group during
CASP9 and made predictions for the targets with fewer than 165 resi-
dues that the CASP organizers did not indicate as oligomeric. For targets
with homologs of known structure—the Template-Based Modeling
category—Foldit players were given different alignments to templates
predicted by the HHpred server? via the new Alignment Tool. Despite
these new additions to the game, the performance of Foldit players
over all CASP9 Template-Based Modeling targets was not as good
as those of the best-performing methods, which made better use of
information from homologous structures; extensive energy minimiza-
tion used by Foldit players tended to perturb peripheral portions of the
chain away from the conformations present in homologs.



Finding new algorithms

Algorithm discovery by protein folding game players

Firas Khatib®, Seth Cooper®, Michael D. Tyka®, Kefan Xu®, llya Makedon®, Zoran Popovic®,

David Baker*“', and Foldit Players

*Department of Biochemistry; "Department of Computer Science and Engineering; and ‘Howard Hughes Medical Institute, University of Washington,

Box 357370, Seattle, WA 98195

Contributed by David Baker, October 5, 2011 (sent for review June 29, 2011)

Foldit is a multiplayer online game in which players collaborate
and compete to create accurate protein structure models. For spe-
cific hard problems, Foldit player solutions can in some cases out-
perform state-of-the-art computational methods. However, very
little is known about how collaborative gameplay produces these
results and whether Foldit player strategies can be formalized and
structured so that they can be used by computers. To determine
whether high performing player strategies could be collectively
codified, we augmented the Foldit gameplay mechanics with tools
for players to encode their folding strategies as “recipes” and to
share their recipes with other players, who are able to further mod-
ify and redistribute them. Here we describe the rapid social evolu-
tion of player-developed folding algorithms that took place in the
year following the introduction of these tools. Players developed
over 5,400 different recipes, both by creating new algorithms and
by modifying and recombining successful recipes developed by
other players. The most successful recipes rapidly spread through
the Foldit player population, and two of the recipes became parti-
cularly dominant. Examination of the algorithms encoded in these

As the players themselves understand their strategies better than
anyone, we decided to allow them to codify their algorithms
directly, rather than attempting to automatically learn approxi-
mations. We augmented standard Foldit play with the ability to
create, edit, share, and rate gameplay macros, referred to as
“recipes” within the Foldit game (10). In the game each player
has their own “cookbook” of such recipes, from which they can
invoke a variety of interactive automated strategies. Players can
share recipes they write with the rest of the Foldit community or
they can choose to keep their creations to themselves.

In this paper we describe the quite unexpected evolution of
recipes in the year after they were released, and the striking con-
vergence of this very short evolution on an algorithm very similar
to an unpublished algorithm recently developed independently
by scientific experts that improves over previous methods.

Results
In the social development environment provided by Foldit,
players evolved a wide variety of recipes to codify their diverse
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Making improved enzymes

LETTERS

nature
biotechnology

Increased Diels-Alderase activity through backbone
remodeling guided by Foldit players

Christopher B Eiben!-6, Justin B Siegel!-%, Jacob B Bale!:2, Seth Cooper?, Firas Khatib!, Betty W Shen?,
Foldit Players, Barry L Stoddard?, Zoran Popovic® & David Baker!-®

Computational enzyme design holds promise for the production
of renewable fuels, drugs and chemicals. De novo enzyme
design has generated catalysts for several reactions, but with
lower catalytic efficiencies than naturally occurring enzymes1—4.
Here we report the use of game-driven crowdsourcing to
enhance the activity of a computationally designed enzyme
through the functional remodeling of its structure. Players

of the online game Foldit®6 were challenged to remodel the
backbone of a computationally designed bimolecular Diels-
Alderase3 to enable additional interactions with substrates.
Several iterations of design and characterization generated

a 24-residue helix-turn-helix motif, including a 13-residue
insertion, that increased enzyme activity >18-fold. X-ray
crystallography showed that the large insertion adopts a
helix-turn-helix structure positioned as in the Foldit model.

To explore whether human creativity can guide the search in this sub-
stantially larger space, we incorporated new tools allowing insertions,
deletions and sequence substitutions into Foldit to supplement the
existing tools available for manipulating protein conformation. To inte-
grate players into the experimental design process, we presented them
with a series of puzzles. To connect Foldit player iterative exploration
with experimental testing, we established an advanced Foldit player as
an intermediary between the Foldit community and the experimental
laboratory, who presented players with puzzles at each stage of the
design process. Using Foldit, the advanced player analyzed the top-
ranking community designs and built sequence libraries around the
structures to stabilize favorable interactions. The designs were then
experimentally tested, and the best were used as input for the next
puzzle posted to the online community (Supplementary Fig. 1).

We challenged Foldit players to remodel the active-site loops of a



Kryder's law

* For a long time the
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Storing data in DNA
LETTER

Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA

Nick Goldman', Paul Bertone', Siyuan Chen?, Christophe Dessimoz!, Emily M. LeProust?, Botond Sipos' & Ewan Birney’

doi:10.1038/naturel1875

e Stored a text file, few images, a sound file in the
DNA
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Encoding of a binary stream In a
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Cost of storing data in DNA
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Cost of retrieving DNA stored data
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Cost comparison with tape storage
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DNA Is not only small
It's also extremely durable

World's Oldest Genome Sequenced 'IT‘eSCIentlst
From 700!000-Year-0|d Horse DNA TSI EXPLORING LIFE, INSPIRING INNOVATION

Well-preserved specimen pushes back the timing of modern horse evolution.

By Jane J. Lee, National Geographic

NEW TECHMOLOGIES TURM BACK THE CLOCK
OMN SEQUEMCING FOS5IL REMAINS

AUTOCATALYTIC 5ETS
MODEL LIFE'S ORIGIN

MOTION PERCEPTION
ILLUSIONS AND THE BRAIM

CLINICAL TRIALS IM RMA-SEQ VERSUS
THE PRECISION MEDICINE ERA MICROARRAYS

‘ A group of Przewalski's horses, once considered extinct in the wild.



But they were not first to publish

Next-Generation Digital Information
Storage in DNA
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This Is all petty
dispute about months...
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HEKOTOPbBIE NPUHUUIMTHUAJIBHBIE BOMNPOCHI
MUKPOMUHUATIOPHU3ALHUH

Paccmarpupalores obmme acnektol mpobeMbl MHKPOMHHHATIODH3AUHH AWC
KPETHBIX SJEKTPOHHBIX 3neMenToB, Cramsarca BONMpocbl 00 HCNOAL30OBAHHW HH
AMBHAYAJAbHBIX MHKpoOnpoueccos Aas ueaei oOpaboOTKH nudopmauuu. C sToR
TOUKH 3peHHs OOGCYKNAeTCA COBPEMEHHOE COCTLAHHE KSBAHTOBOH MEXaHHKH
reopHH OHOJOrHYECKOR nepejayd Hac eACTBeHHOR HHpopMaluK
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